数学当n属于N*时当n属于N*时 ,Sn=1-1/2+1/3-1/4...+1/2n-1-1/2nTn=1/(n+1)+1/(n+2).+1/2n(1)求S1 S2 T1 T2 (2)猜想Sn与Tn的关系并用数学归纳法证明
2019-04-14
数学当n属于N*时
当n属于N*时 ,Sn=1-1/2+1/3-1/4...+1/2n-1-1/2nTn=1/(n+1)+1/(n+2).+1/2n(1)求S1 S2 T1 T2 (2)猜想Sn与Tn的关系并用数学归纳法证明
优质解答
(1)S1=1-1/2=1/2;S2=1-1/2+1/3-1/4=7/12;T1=1/2;T2=1/3+1/4=7/12(2)猜想Sn=Tn当n=1时,S1=T1=1/2显然成立假设当n=k(k属于N*)时也成立,则当n=k+1时,S(k+1)=Sk+1/[2(k+1)-1]-1/2(k+1)=Tk+1/(2k+1)-1/(2k+2),又Tk=T(k+1)+1/(k+1)-1/(2k+1)-1/(2k+2),则S(k+1)=T(k+1)+1/(k+1)-2/(2k+2)=T(k+1),则当n=k+1时也成立根据可知,对于任意n(n属于N*)猜想均成立
(1)S1=1-1/2=1/2;S2=1-1/2+1/3-1/4=7/12;T1=1/2;T2=1/3+1/4=7/12(2)猜想Sn=Tn当n=1时,S1=T1=1/2显然成立假设当n=k(k属于N*)时也成立,则当n=k+1时,S(k+1)=Sk+1/[2(k+1)-1]-1/2(k+1)=Tk+1/(2k+1)-1/(2k+2),又Tk=T(k+1)+1/(k+1)-1/(2k+1)-1/(2k+2),则S(k+1)=T(k+1)+1/(k+1)-2/(2k+2)=T(k+1),则当n=k+1时也成立根据可知,对于任意n(n属于N*)猜想均成立