数学
三角函数的初中内容都是什么哦?有分的

2019-05-27

三角函数的初中内容都是什么哦?有分的
优质解答
三角函数 由于三角函数的周期性,它并不具有单值函数意义上的反函数.三角函数在复数中有较为重要的应用.在物理学中,三角函数也是常用的工具.   角 θ的所有三角函数它有六种基本函数(初等基本表示):
  在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)有
  正弦函数 sinθ=y/r
  余弦函数 cosθ=x/r
  正切函数 tanθ=y/x
  余切函数 cotθ=x/y
  正割函数 secθ=r/x
  余割函数 cscθ=r/y
  (斜边为r,对边为y,邻边为x.)
  以及两个不常用,已趋于被淘汰的函数:
  正矢函数 versinθ =1-cosθ
  余矢函数 coversθ =1-sinθ
  正弦(sin):角α的对边比上斜边
  余弦(cos):角α的邻边比上斜边
  正切(tan):角α的对边比上邻边
  余切(cot):角α的邻边比上对边
  正割(sec):角α的斜边比上邻边
  余割(csc):角α的斜边比上对边 同角三角函数间的基本关系式  ·平方关系:
  (sinx)^2+(cosx)^2=1
  1+(tanx)^2=(secx)^2
  1+(cotx)^2=(cscx)^2
  ·积的关系:
  sinα=tanα×cosα
  cosα=cotα×sinα
  tanα=sinα×secα
  cotα=cosα×cscα
  secα=tanα×cscα
  cscα=secα×cotα
  ·倒数关系:
  tanα ·cotα=1
  sinα ·cscα=1
  cosα ·secα=1
  商的关系:
  sinα/cosα=tanα=secα/cscα
  cosα/sinα=cotα=cscα/secα
  直角三角形ABC中,
  角A的正弦值就等于角A的对边比斜边,
  余弦等于角A的邻边比斜边
  正切等于对边比邻边,
  对称性
  180度-α的终边和α的终边关于y轴对称.
  -α的终边和α的终边关于x轴对称.
  180度+α的终边和α的终边关于原点对称.
  180度/2-α的终边关于y=x对称. 三角函数恒等变形公式  ·两角和与差的三角函数:
  cos(α+β)=cosα·cosβ-sinα·sinβ
  cos(α-β)=cosα·cosβ+sinα·sinβ
  sin(α±β)=sinα·cosβ±cosα·sinβ
  tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
  tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
  ·三角和的三角函数:
  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
  cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
  tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
  ·辅助角公式:
  Asinα+Bcosα=√(A²+B²)sin(α+arctan(B/A)),其中
  sint=B/√(A²+B²)
  cost=A/√(A²+B²)
  tant=B/A
  Asinα-Bcosα=√(A²+B²)cos(α-t),tant=A/B
  ·倍角公式:
  sin(2α)=2sinα·cosα=2/(tanα+cotα)
  cos(2α)=(cosα)^2-(sinα)^2=)=2(cosα)^2-1=1-2(sinα)^2 
  tan(2α)=2tanα/(1-tan²α)
  ·三倍角公式:
  sin(3α) = 3sinα-4sin³α = 4sinα·sin(60°+α)sin(60°-α)
  cos(3α) = 4cos³α-3cosα = 4cosα·cos(60°+α)cos(60°-α)
  tan(3α) = (3tanα-tan³α)/(1-3tan³α) = tanαtan(π/3+α)tan(π/3-α)
  ·半角公式:
  sin(α/2)=±√((1-cosα)/2)
  cos(α/2)=±√((1+cosα)/2)
  tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
  ·降幂公式
  sin²α=(1-cos(2α))/2=versin(2α)/2
  cos²α=(1+cos(2α))/2=covers(2α)/2
  tan²α=(1-cos(2α))/(1+cos(2α))
  ·万能公式:
  sinα=2tan(α/2)/[1+tan²(α/2)]
  cosα=[1-tan²(α/2)]/[1+tan²(α/2)]
  tanα=2tan(α/2)/[1-tan²(α/2)]
  ·积化和差公式:
  sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
  cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
  cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
  sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
  ·和差化积公式:
  sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
  sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
  cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
  cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
  ·推导公式
  tanα+cotα=2/sin2α
  tanα-cotα=-2cot2α
  1+cos2α=2cos²α
  1-cos2α=2sin²α
  1+sinα=[sin(α/2)+cos(α/2)]²
  ·其他:
  sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
  cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及
  sin²(α)+sin²(α-2π/3)+sin²(α+2π/3)=3/2
  tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
  cosx+cos2x+...+cosnx= [sin(n+1)x+sinnx-sinx]/2sinx
  证明:
  左边=2sinx(cosx+cos2x+...+cosnx)/2sinx
  =[sin2x-0+sin3x-sinx+sin4x-sin2x+...+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx (积化和差)
  =[sin(n+1)x+sinnx-sinx]/2sinx=右边
  等式得证
  sinx+sin2x+...+sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx
  证明:
  左边=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)
  =[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx)
  =- [cos(n+1)x+cosnx-cosx-1]/2sinx=右边
  等式得证
  三倍角公式推导
  sin3a
  =sin(2a+a)
  =sin2acosa+cos2asina
  =2sina(1-sin²a)+(1-2sin²a)sina
  =3sina-4sin³a
  cos3a
  =cos(2a+a)
  =cos2acosa-sin2asina
  =(2cos²a-1)cosa-2(1-cos²a)cosa
  =4cos³a-3cosa
  sin3a=3sina-4sin³a
  =4sina(3/4-sin²a)
  =4sina[(√3/2)²-sin²a]
  =4sina(sin²60°-sin²a)
  =4sina(sin60°+sina)(sin60°-sina)
  =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°+a)/2]
  =4sinasin(60°+a)sin(60°-a)
  cos3a=4cos³a-3cosa
  =4cosa(cos²a-3/4)
  =4cosa[cos²a-(√3/2)²]
  =4cosa(cos²a-cos²30°)
  =4cosa(cosa+cos30°)(cosa-cos30°)
  =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}
  =-4cosasin(a+30°)sin(a-30°)
  =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]
  =-4cosacos(60°-a)[-cos(60°+a)]
  =4cosacos(60°-a)cos(60°+a)
  上述两式相比可得
  tan3a=tanatan(60°-a)tan(60°+a) [编辑本段]三角函数的诱导公式  公式一:
  设α为任意角,终边相同的角的同一三角函数的值相等:
   sin(2kπ+α)=sinα
  cos(2kπ+α)=cosα
  tan(2kπ+α)=tanα
  cot(2kπ+α)=cotα
  公式二:
  设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
  sin(π+α)=-sinα
  cos(π+α)=-cosα
  tan(π+α)=tanα
  cot(π+α)=cotα
  公式三:
  任意角α与 -α的三角函数值之间的关系:
  sin(-α)=-sinα
  cos(-α)=cosα
  tan(-α)=-tanα
  cot(-α)=-cotα
  公式四:
  利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
  sin(π-α)=sinα
  cos(π-α)=-cosα
  tan(π-α)=-tanα
  cot(π-α)=-cotα
  公式五:
  利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
  sin(2π-α)=-sinα
  cos(2π-α)=cosα
  tan(2π-α)=-tanα
  cot(2π-α)=-cotα
  公式六:
  π/2±α及3π/2±α与α的三角函数值之间的关系:
  sin(π/2+α)=cosα
  cos(π/2+α)=-sinα
  tan(π/2+α)=-cotα
  cot(π/2+α)=-tanα
  sin(π/2-α)=cosα
  cos(π/2-α)=sinα
  tan(π/2-α)=cotα
  cot(π/2-α)=tanα
  sin(3π/2+α)=-cosα
  cos(3π/2+α)=sinα
  tan(3π/2+α)=-cotα
  cot(3π/2+α)=-tanα
  sin(3π/2-α)=-cosα
  cos(3π/2-α)=-sinα
  tan(3π/2-α)=cotα
  cot(3π/2-α)=tanα
  补充:6×9=54种诱导公式的表格以及推导方法(定名法则和定号法则)
   f(β)→
  f(β)=↘
  β↓
  sinβ
  cosβ
  tanβ
  cotβ
  secβ
  cscβ360k+αsinαcosαtanαcotαsecαcscα90°-αcosαsinαcotαtanαcscαsecα90°+αcosα-sinα-cotα-tanα-cscαsecα180°-αsinα-cosα-tanα-cotα-secαcscα180°+α-sinα-cosαtanαcotα-secα-cscα270°-α-cosα-sinαcotαtanα-cscα-secα270°+α-cosαsinα-cotα-tanαcscα-secα360°-α-sinαcosα-tanα-cotαsecα-cscα﹣α-sinαcosα-tanα-cotαsecα-cscα
  定名法则
  90°的奇数倍+α的三角函数,其绝对值与α三角函数的绝对值互为余函数.90°的偶数倍+α的三角函数与α的三角函数绝对值相同.也就是“奇余偶同,奇变偶不变”
  定号法则
  将α看做锐角(注意是“看做”),按所得的角的象限,取三角函数的符号.也就是“象限定号,符号看象限”.(或为“奇变偶不变,符号看象限”在Kπ/
  2中如果K为奇数时函数名不变,若为偶数被时函数名变为相反的函数名.正负号看原函数中α所在象限的正负号.关于正负号有可口诀;一全二正弦,三切四余弦,即第一象限全部为正,第二象限角正弦为正,第三为正切为正,第四象限余弦为正.)
  比如:90°+α.定名:90°是90°的奇数倍,所以应取余函数;定号:将α看做锐角,那么90°+α是第二象限角,第二象限角的正弦为正,余弦为负.所以sin(90°+α)=cosα , cos(90°+α)=-sinα 这个非常神奇,屡试不爽~
  还有一个口诀“纵变横不变,符号看象限”,例如:sin(90°+α),90°的终边在纵轴上,所以函数名变为相反的函数名,即cos,将α看做锐角,那么90°+α是第二象限角,第二象限角的正弦为正,所以sin(90°+α)=cosα [编辑本段]三角形与三角函数  1、正弦定理:在三角形中,各边和它所对的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R .(其中R为外接圆的半径)
  2、第一余弦定理:三角形中任意一边等于其他两边以及对应角余弦的交叉乘积的和,即a=c cosB + b cosC
  3、第二余弦定理:三角形中任何一边的平方等于其它两边的平方之和减去这两边与它们夹角的余弦的积的2倍,即a²=b²+c²-2bc cosA
  4、正切定理(napier比拟):三角形中任意两边差和的比值等于对应角半角差和的正切比值,即(a-b)/(a+b)=tan[(A-B)/2]/tan[(A+B)/2]=tan[(A-B)/2]/cot(C/2)
  5、三角形中的恒等式:
  对于任意非直角三角形中,如三角形ABC,总有tanA+tanB+tanC=tanAtanBtanC
  证明:
  已知(A+B)=(π-C)
  所以tan(A+B)=tan(π-C)
  则(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)
  整理可得
  tanA+tanB+tanC=tanAtanBtanC
  类似地,我们同样也可以求证:当α+β+γ=nπ(n∈Z)时,总有tanα+tanβ+tanγ=tanαtanβtanγ [编辑本段]部分高等内容  ·高等代数中三角函数的指数表示(由泰勒级数易得):
  sinx=[e^(ix)-e^(-ix)]/(2i)
  cosx=[e^(ix)+e^(-ix)]/2
  tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]
  泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…
  此时三角函数定义域已推广至整个复数集.
  ·三角函数作为微分方程的
  对于微分方程组 y=-y'';y=y'''',有通解Q,可证明
  Q=Asinx+Bcosx,因此也可以从此出发定义三角函数.
  补充:由相应的指数表示我们可以定义一种类似的函数——双曲函数,其拥有很多与三角函数的类似的性质,二者相映成趣.
  :
  角度a 0° 30° 45° 60° 90° 180°
  1.sina 0 1/2 √2/2 √3/2 1 0
  2.cosa 1 √3/2 √2/2 1/2 0 -1
  3.tana 0 √3/3 1 √3 / 0
  4.cota / √3 1 √3/3 0 /
  (注:“√”为根号)三角函数的计算  幂级数
  c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞)
  c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞)
  它们的各项都是正整数幂的幂函数, 其中c0,c1,c2,...cn...及a都是常数, 这种级数称为幂级数.
  泰勒展开式(幂级数展开法):
  f(x)=f(a)+f'(a)/1!*(x-a)+f''(a)/2!*(x-a)2+...f(n)(a)/n!*(x-a)n+...
  实用幂级数:
  ex = 1+x+x2/2!+x3/3!+...+xn/n!+...
  ln(1+x)= x-x2/3+x3/3-...(-1)k-1*xk/k+... (|x|
三角函数 由于三角函数的周期性,它并不具有单值函数意义上的反函数.三角函数在复数中有较为重要的应用.在物理学中,三角函数也是常用的工具.   角 θ的所有三角函数它有六种基本函数(初等基本表示):
  在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)有
  正弦函数 sinθ=y/r
  余弦函数 cosθ=x/r
  正切函数 tanθ=y/x
  余切函数 cotθ=x/y
  正割函数 secθ=r/x
  余割函数 cscθ=r/y
  (斜边为r,对边为y,邻边为x.)
  以及两个不常用,已趋于被淘汰的函数:
  正矢函数 versinθ =1-cosθ
  余矢函数 coversθ =1-sinθ
  正弦(sin):角α的对边比上斜边
  余弦(cos):角α的邻边比上斜边
  正切(tan):角α的对边比上邻边
  余切(cot):角α的邻边比上对边
  正割(sec):角α的斜边比上邻边
  余割(csc):角α的斜边比上对边 同角三角函数间的基本关系式  ·平方关系:
  (sinx)^2+(cosx)^2=1
  1+(tanx)^2=(secx)^2
  1+(cotx)^2=(cscx)^2
  ·积的关系:
  sinα=tanα×cosα
  cosα=cotα×sinα
  tanα=sinα×secα
  cotα=cosα×cscα
  secα=tanα×cscα
  cscα=secα×cotα
  ·倒数关系:
  tanα ·cotα=1
  sinα ·cscα=1
  cosα ·secα=1
  商的关系:
  sinα/cosα=tanα=secα/cscα
  cosα/sinα=cotα=cscα/secα
  直角三角形ABC中,
  角A的正弦值就等于角A的对边比斜边,
  余弦等于角A的邻边比斜边
  正切等于对边比邻边,
  对称性
  180度-α的终边和α的终边关于y轴对称.
  -α的终边和α的终边关于x轴对称.
  180度+α的终边和α的终边关于原点对称.
  180度/2-α的终边关于y=x对称. 三角函数恒等变形公式  ·两角和与差的三角函数:
  cos(α+β)=cosα·cosβ-sinα·sinβ
  cos(α-β)=cosα·cosβ+sinα·sinβ
  sin(α±β)=sinα·cosβ±cosα·sinβ
  tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
  tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
  ·三角和的三角函数:
  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
  cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
  tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
  ·辅助角公式:
  Asinα+Bcosα=√(A²+B²)sin(α+arctan(B/A)),其中
  sint=B/√(A²+B²)
  cost=A/√(A²+B²)
  tant=B/A
  Asinα-Bcosα=√(A²+B²)cos(α-t),tant=A/B
  ·倍角公式:
  sin(2α)=2sinα·cosα=2/(tanα+cotα)
  cos(2α)=(cosα)^2-(sinα)^2=)=2(cosα)^2-1=1-2(sinα)^2 
  tan(2α)=2tanα/(1-tan²α)
  ·三倍角公式:
  sin(3α) = 3sinα-4sin³α = 4sinα·sin(60°+α)sin(60°-α)
  cos(3α) = 4cos³α-3cosα = 4cosα·cos(60°+α)cos(60°-α)
  tan(3α) = (3tanα-tan³α)/(1-3tan³α) = tanαtan(π/3+α)tan(π/3-α)
  ·半角公式:
  sin(α/2)=±√((1-cosα)/2)
  cos(α/2)=±√((1+cosα)/2)
  tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
  ·降幂公式
  sin²α=(1-cos(2α))/2=versin(2α)/2
  cos²α=(1+cos(2α))/2=covers(2α)/2
  tan²α=(1-cos(2α))/(1+cos(2α))
  ·万能公式:
  sinα=2tan(α/2)/[1+tan²(α/2)]
  cosα=[1-tan²(α/2)]/[1+tan²(α/2)]
  tanα=2tan(α/2)/[1-tan²(α/2)]
  ·积化和差公式:
  sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
  cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
  cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
  sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
  ·和差化积公式:
  sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
  sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
  cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
  cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
  ·推导公式
  tanα+cotα=2/sin2α
  tanα-cotα=-2cot2α
  1+cos2α=2cos²α
  1-cos2α=2sin²α
  1+sinα=[sin(α/2)+cos(α/2)]²
  ·其他:
  sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
  cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及
  sin²(α)+sin²(α-2π/3)+sin²(α+2π/3)=3/2
  tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
  cosx+cos2x+...+cosnx= [sin(n+1)x+sinnx-sinx]/2sinx
  证明:
  左边=2sinx(cosx+cos2x+...+cosnx)/2sinx
  =[sin2x-0+sin3x-sinx+sin4x-sin2x+...+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx (积化和差)
  =[sin(n+1)x+sinnx-sinx]/2sinx=右边
  等式得证
  sinx+sin2x+...+sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx
  证明:
  左边=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)
  =[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx)
  =- [cos(n+1)x+cosnx-cosx-1]/2sinx=右边
  等式得证
  三倍角公式推导
  sin3a
  =sin(2a+a)
  =sin2acosa+cos2asina
  =2sina(1-sin²a)+(1-2sin²a)sina
  =3sina-4sin³a
  cos3a
  =cos(2a+a)
  =cos2acosa-sin2asina
  =(2cos²a-1)cosa-2(1-cos²a)cosa
  =4cos³a-3cosa
  sin3a=3sina-4sin³a
  =4sina(3/4-sin²a)
  =4sina[(√3/2)²-sin²a]
  =4sina(sin²60°-sin²a)
  =4sina(sin60°+sina)(sin60°-sina)
  =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°+a)/2]
  =4sinasin(60°+a)sin(60°-a)
  cos3a=4cos³a-3cosa
  =4cosa(cos²a-3/4)
  =4cosa[cos²a-(√3/2)²]
  =4cosa(cos²a-cos²30°)
  =4cosa(cosa+cos30°)(cosa-cos30°)
  =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}
  =-4cosasin(a+30°)sin(a-30°)
  =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]
  =-4cosacos(60°-a)[-cos(60°+a)]
  =4cosacos(60°-a)cos(60°+a)
  上述两式相比可得
  tan3a=tanatan(60°-a)tan(60°+a) [编辑本段]三角函数的诱导公式  公式一:
  设α为任意角,终边相同的角的同一三角函数的值相等:
   sin(2kπ+α)=sinα
  cos(2kπ+α)=cosα
  tan(2kπ+α)=tanα
  cot(2kπ+α)=cotα
  公式二:
  设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
  sin(π+α)=-sinα
  cos(π+α)=-cosα
  tan(π+α)=tanα
  cot(π+α)=cotα
  公式三:
  任意角α与 -α的三角函数值之间的关系:
  sin(-α)=-sinα
  cos(-α)=cosα
  tan(-α)=-tanα
  cot(-α)=-cotα
  公式四:
  利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
  sin(π-α)=sinα
  cos(π-α)=-cosα
  tan(π-α)=-tanα
  cot(π-α)=-cotα
  公式五:
  利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
  sin(2π-α)=-sinα
  cos(2π-α)=cosα
  tan(2π-α)=-tanα
  cot(2π-α)=-cotα
  公式六:
  π/2±α及3π/2±α与α的三角函数值之间的关系:
  sin(π/2+α)=cosα
  cos(π/2+α)=-sinα
  tan(π/2+α)=-cotα
  cot(π/2+α)=-tanα
  sin(π/2-α)=cosα
  cos(π/2-α)=sinα
  tan(π/2-α)=cotα
  cot(π/2-α)=tanα
  sin(3π/2+α)=-cosα
  cos(3π/2+α)=sinα
  tan(3π/2+α)=-cotα
  cot(3π/2+α)=-tanα
  sin(3π/2-α)=-cosα
  cos(3π/2-α)=-sinα
  tan(3π/2-α)=cotα
  cot(3π/2-α)=tanα
  补充:6×9=54种诱导公式的表格以及推导方法(定名法则和定号法则)
   f(β)→
  f(β)=↘
  β↓
  sinβ
  cosβ
  tanβ
  cotβ
  secβ
  cscβ360k+αsinαcosαtanαcotαsecαcscα90°-αcosαsinαcotαtanαcscαsecα90°+αcosα-sinα-cotα-tanα-cscαsecα180°-αsinα-cosα-tanα-cotα-secαcscα180°+α-sinα-cosαtanαcotα-secα-cscα270°-α-cosα-sinαcotαtanα-cscα-secα270°+α-cosαsinα-cotα-tanαcscα-secα360°-α-sinαcosα-tanα-cotαsecα-cscα﹣α-sinαcosα-tanα-cotαsecα-cscα
  定名法则
  90°的奇数倍+α的三角函数,其绝对值与α三角函数的绝对值互为余函数.90°的偶数倍+α的三角函数与α的三角函数绝对值相同.也就是“奇余偶同,奇变偶不变”
  定号法则
  将α看做锐角(注意是“看做”),按所得的角的象限,取三角函数的符号.也就是“象限定号,符号看象限”.(或为“奇变偶不变,符号看象限”在Kπ/
  2中如果K为奇数时函数名不变,若为偶数被时函数名变为相反的函数名.正负号看原函数中α所在象限的正负号.关于正负号有可口诀;一全二正弦,三切四余弦,即第一象限全部为正,第二象限角正弦为正,第三为正切为正,第四象限余弦为正.)
  比如:90°+α.定名:90°是90°的奇数倍,所以应取余函数;定号:将α看做锐角,那么90°+α是第二象限角,第二象限角的正弦为正,余弦为负.所以sin(90°+α)=cosα , cos(90°+α)=-sinα 这个非常神奇,屡试不爽~
  还有一个口诀“纵变横不变,符号看象限”,例如:sin(90°+α),90°的终边在纵轴上,所以函数名变为相反的函数名,即cos,将α看做锐角,那么90°+α是第二象限角,第二象限角的正弦为正,所以sin(90°+α)=cosα [编辑本段]三角形与三角函数  1、正弦定理:在三角形中,各边和它所对的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R .(其中R为外接圆的半径)
  2、第一余弦定理:三角形中任意一边等于其他两边以及对应角余弦的交叉乘积的和,即a=c cosB + b cosC
  3、第二余弦定理:三角形中任何一边的平方等于其它两边的平方之和减去这两边与它们夹角的余弦的积的2倍,即a²=b²+c²-2bc cosA
  4、正切定理(napier比拟):三角形中任意两边差和的比值等于对应角半角差和的正切比值,即(a-b)/(a+b)=tan[(A-B)/2]/tan[(A+B)/2]=tan[(A-B)/2]/cot(C/2)
  5、三角形中的恒等式:
  对于任意非直角三角形中,如三角形ABC,总有tanA+tanB+tanC=tanAtanBtanC
  证明:
  已知(A+B)=(π-C)
  所以tan(A+B)=tan(π-C)
  则(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)
  整理可得
  tanA+tanB+tanC=tanAtanBtanC
  类似地,我们同样也可以求证:当α+β+γ=nπ(n∈Z)时,总有tanα+tanβ+tanγ=tanαtanβtanγ [编辑本段]部分高等内容  ·高等代数中三角函数的指数表示(由泰勒级数易得):
  sinx=[e^(ix)-e^(-ix)]/(2i)
  cosx=[e^(ix)+e^(-ix)]/2
  tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]
  泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…
  此时三角函数定义域已推广至整个复数集.
  ·三角函数作为微分方程的
  对于微分方程组 y=-y'';y=y'''',有通解Q,可证明
  Q=Asinx+Bcosx,因此也可以从此出发定义三角函数.
  补充:由相应的指数表示我们可以定义一种类似的函数——双曲函数,其拥有很多与三角函数的类似的性质,二者相映成趣.
  :
  角度a 0° 30° 45° 60° 90° 180°
  1.sina 0 1/2 √2/2 √3/2 1 0
  2.cosa 1 √3/2 √2/2 1/2 0 -1
  3.tana 0 √3/3 1 √3 / 0
  4.cota / √3 1 √3/3 0 /
  (注:“√”为根号)三角函数的计算  幂级数
  c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞)
  c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞)
  它们的各项都是正整数幂的幂函数, 其中c0,c1,c2,...cn...及a都是常数, 这种级数称为幂级数.
  泰勒展开式(幂级数展开法):
  f(x)=f(a)+f'(a)/1!*(x-a)+f''(a)/2!*(x-a)2+...f(n)(a)/n!*(x-a)n+...
  实用幂级数:
  ex = 1+x+x2/2!+x3/3!+...+xn/n!+...
  ln(1+x)= x-x2/3+x3/3-...(-1)k-1*xk/k+... (|x|
相关问答