读书
数学节的由来

2019-05-01

数学节的由来
优质解答
一个世纪前,德国数学家希尔伯特(1862—1943)在巴黎国际数学家大会上作了题
为《数学问题》的著名讲演.这是载入数学史册的重要讲演.他在讲演的前言和结束语
中,对数学的意义、源泉、发展过程及研究方法等发表了许多精辟的见解.而整个讲演
的主体,则是他根据19世纪数学研究的成果和发展趋势而提出的23个数学问题,这些问
题涉及现代数学的许多重要领域.100年来,这些问题一直激发着数学家们浓厚的研究兴
趣.100年过去了,这些问题近一半已经解决或基本解决,还有些问题虽取得了重大进
展,但尚未最后解决,如黎曼猜想、哥德巴赫猜想等.
100年过去了,现在回过头来看,对希尔伯特提出的23个问题,有不少评论.很多人
认为这些问题对推动20世纪数学的发展起了很大的作用,当然也有评论曾指出其不足之
处,例如,这23个问题中未能包括拓朴学、微分几何等在20世纪成为前沿学科领域中的
数学问题,除数学物理外很少涉及应用数学,等等,当然更不会想到20世纪电脑的大发
展及其对数学的重大影响.20世纪数学的发展实际上远远超出了希尔伯特所预示的范
围.
希尔伯特是19世纪和20世纪数学交界线上高耸着的三位伟大数学家之一,另两位是
庞加莱(1854—1912)及克莱因(1849—1925).他们的数学思想及对数学的贡献,既
反射出19世纪数学的光辉,也照耀着20世纪数学前进的道路.
希尔伯特是在上一次世纪交替之际作讲演的,现在又一个新的世纪开始了,再来看
看他的讲演,其中一些话仍然适用,例如在讲演一开始,他说“我们当中有谁不想揭开
未来的帷幕,看一看在今后的世纪里我们这门科学发展的前景和奥秘呢?我们下一代的
主要数学思潮将追求什么样的特殊目标?在广阔而丰富的数学思想领域,新世纪将会带
来什么样的新方法和新成果?”他还说:“历史教导我们,科学的发展具有连续性.我
们知道,每个时代都有它自己的问题,这些问题后来或者得以解决,或者因为无所裨益
而被抛到一边并代之以新的问题.因为一个伟大时代的结束,不仅促使我们追溯过去,
而且把我们的思想引向那未知的将来.”
20世纪无疑是一个数学的伟大时代,21世纪的数学将会更加辉煌.“每个时代都有
它自己的问题”,20世纪来临时,希尔伯特提出了他认为是那个世纪的23个问题.这些
问题对20世纪数学的发展起了很大的推动作用,但20世纪数学的成就却远远超出他所提
出的问题.那么21世纪的问题又是什么呢?希尔伯特在巴黎国际数学家大会上提出这些
问题时,才38岁,但已经是当时举世公认的德高望重的领袖数学家之一.大家知道,
2002年国际数学家大会将在中国北京召开,这是国际数学家大会第一次在发展中国家召
开,那么在这新旧世纪交替之际,会不会有像希尔伯特这样具有崇高威望的人在会上提
出他认为的21世纪的数学问题或是以其他的形式展望21世纪的数学?这些年来,已有不
少数学家提出自己认为的21世纪的数学问题,但往往是“仁者见仁,智者见智”.
一个世纪前,德国数学家希尔伯特(1862—1943)在巴黎国际数学家大会上作了题
为《数学问题》的著名讲演.这是载入数学史册的重要讲演.他在讲演的前言和结束语
中,对数学的意义、源泉、发展过程及研究方法等发表了许多精辟的见解.而整个讲演
的主体,则是他根据19世纪数学研究的成果和发展趋势而提出的23个数学问题,这些问
题涉及现代数学的许多重要领域.100年来,这些问题一直激发着数学家们浓厚的研究兴
趣.100年过去了,这些问题近一半已经解决或基本解决,还有些问题虽取得了重大进
展,但尚未最后解决,如黎曼猜想、哥德巴赫猜想等.
100年过去了,现在回过头来看,对希尔伯特提出的23个问题,有不少评论.很多人
认为这些问题对推动20世纪数学的发展起了很大的作用,当然也有评论曾指出其不足之
处,例如,这23个问题中未能包括拓朴学、微分几何等在20世纪成为前沿学科领域中的
数学问题,除数学物理外很少涉及应用数学,等等,当然更不会想到20世纪电脑的大发
展及其对数学的重大影响.20世纪数学的发展实际上远远超出了希尔伯特所预示的范
围.
希尔伯特是19世纪和20世纪数学交界线上高耸着的三位伟大数学家之一,另两位是
庞加莱(1854—1912)及克莱因(1849—1925).他们的数学思想及对数学的贡献,既
反射出19世纪数学的光辉,也照耀着20世纪数学前进的道路.
希尔伯特是在上一次世纪交替之际作讲演的,现在又一个新的世纪开始了,再来看
看他的讲演,其中一些话仍然适用,例如在讲演一开始,他说“我们当中有谁不想揭开
未来的帷幕,看一看在今后的世纪里我们这门科学发展的前景和奥秘呢?我们下一代的
主要数学思潮将追求什么样的特殊目标?在广阔而丰富的数学思想领域,新世纪将会带
来什么样的新方法和新成果?”他还说:“历史教导我们,科学的发展具有连续性.我
们知道,每个时代都有它自己的问题,这些问题后来或者得以解决,或者因为无所裨益
而被抛到一边并代之以新的问题.因为一个伟大时代的结束,不仅促使我们追溯过去,
而且把我们的思想引向那未知的将来.”
20世纪无疑是一个数学的伟大时代,21世纪的数学将会更加辉煌.“每个时代都有
它自己的问题”,20世纪来临时,希尔伯特提出了他认为是那个世纪的23个问题.这些
问题对20世纪数学的发展起了很大的推动作用,但20世纪数学的成就却远远超出他所提
出的问题.那么21世纪的问题又是什么呢?希尔伯特在巴黎国际数学家大会上提出这些
问题时,才38岁,但已经是当时举世公认的德高望重的领袖数学家之一.大家知道,
2002年国际数学家大会将在中国北京召开,这是国际数学家大会第一次在发展中国家召
开,那么在这新旧世纪交替之际,会不会有像希尔伯特这样具有崇高威望的人在会上提
出他认为的21世纪的数学问题或是以其他的形式展望21世纪的数学?这些年来,已有不
少数学家提出自己认为的21世纪的数学问题,但往往是“仁者见仁,智者见智”.
相关问答