数学
大一高数 设f(x)在[a,b]上连续,且f(x)>0,其中D:x,y属于[a,b],证明:二重积分f(x)/f(y)dxdy>=(b-a)^2

2019-04-14

大一高数 设f(x)在[a,b]上连续,且f(x)>0,其中D:x,y属于[a,b],证明:二重积分f(x)/f(y)dxdy>=(b-a)^2
优质解答
的题错了,不是导数,是积分吧?
给你一个二重积分的做法,如果没学过二重积分,请追问,我再给你一个定积分做法.

左边=∫[a→b] f(x)dx∫[a→b] 1/f(x)dx
定积分可随便换积分变量
=∫[a→b] f(x)dx∫[a→b] 1/f(y)dy
=∫∫(D) f(x)/f(y) dxdy 其中:D为a≤x≤b,a≤y≤b
该积分区域为正方形区域,关于y=x对称,则满足轮换对称性,即:∫∫ f(x)/f(y)dxdy=∫∫ f(y)/f(x)dxdy
=(1/2)∫∫(D) [f(x)/f(y) + f(y)/f(x)] dxdy
由平均值不等式
≥∫∫(D) 1 dxdy 被积函数为1,积分结果是区域面积
=(b-a)²
=右边
的题错了,不是导数,是积分吧?
给你一个二重积分的做法,如果没学过二重积分,请追问,我再给你一个定积分做法.

左边=∫[a→b] f(x)dx∫[a→b] 1/f(x)dx
定积分可随便换积分变量
=∫[a→b] f(x)dx∫[a→b] 1/f(y)dy
=∫∫(D) f(x)/f(y) dxdy 其中:D为a≤x≤b,a≤y≤b
该积分区域为正方形区域,关于y=x对称,则满足轮换对称性,即:∫∫ f(x)/f(y)dxdy=∫∫ f(y)/f(x)dxdy
=(1/2)∫∫(D) [f(x)/f(y) + f(y)/f(x)] dxdy
由平均值不等式
≥∫∫(D) 1 dxdy 被积函数为1,积分结果是区域面积
=(b-a)²
=右边
相关标签: 连续 属于 证明
相关问答