数学
初中数学几何题(有图)(图的地址)1.如图,圆O是Rt三角形ABC的内切圆,角ACB=90,且AB=13,AC=12,求图中阴影部分的面积.2.若三角新ABC的BC边上的高为AH,BC长为30cm,直线DE平行于BC,分别交AB、AC于点D、E,以DE为直径的半圆与BC切于点F,若半圆面积是18pai(圆周率)cm^2,求AH的长.(此题不附图)3.如图,已知直线AB、BC、CD分别与圆O相切于点E、F、G,且AB平行于CD,若BO=6cm,CO=8cm,求BC、OF、BE+CG的长.

2019-06-25

初中数学几何题(有图)
(图的地址)
1.如图,圆O是Rt三角形ABC的内切圆,角ACB=90,且AB=13,AC=12,求图中阴影部分的面积.
2.若三角新ABC的BC边上的高为AH,BC长为30cm,直线DE平行于BC,分别交AB、AC于点D、E,以DE为直径的半圆与BC切于点F,若半圆面积是18pai(圆周率)cm^2,求AH的长.(此题不附图)
3.如图,已知直线AB、BC、CD分别与圆O相切于点E、F、G,且AB平行于CD,若BO=6cm,CO=8cm,求BC、OF、BE+CG的长.
优质解答
1、将ABC的三个顶点与圆心相连,得到三个三角形:AOB,BOC,COA
三个三角形的面积为:AB*R/2,BC*R/2,AC*R/2(R为内切圆半径)
其和为三角形ABC的面积,AB*R/2+BC*R/2+AC*R/2=BC*AC/2
求出R,阴影部分面积就不难求了.
2、半圆的半径:根号18pai*2/pai=6,
DE=12
由三角形ADE和ABC相似得 AH/(AH-R)=DE/BC,求得AH
3、三角形BOC为直角三角形,可求得BC
BC*OF/2为三角形BOC的面积=OB*OC/2,求得OF
BE=BF,CG=CF,BE+CG=BC
1、将ABC的三个顶点与圆心相连,得到三个三角形:AOB,BOC,COA
三个三角形的面积为:AB*R/2,BC*R/2,AC*R/2(R为内切圆半径)
其和为三角形ABC的面积,AB*R/2+BC*R/2+AC*R/2=BC*AC/2
求出R,阴影部分面积就不难求了.
2、半圆的半径:根号18pai*2/pai=6,
DE=12
由三角形ADE和ABC相似得 AH/(AH-R)=DE/BC,求得AH
3、三角形BOC为直角三角形,可求得BC
BC*OF/2为三角形BOC的面积=OB*OC/2,求得OF
BE=BF,CG=CF,BE+CG=BC
相关问答