数学
数学——圆锥曲线!已知椭圆C1:x^2/a^2+y^2/b^2=1的左右两个焦点F1,F2,离心率为1/2,又抛物线C2:y^2=4mx(m>0)与椭圆C1有公共焦点F2(1,0)1、求椭圆和抛物线的方程2、设直线l经过椭圆的左焦点F1,且与抛物线交于不同两点P,Q且满足向量F1P=向量n(F1Q),求实数n的取值范围

2019-05-27

数学——圆锥曲线!
已知椭圆C1:x^2/a^2+y^2/b^2=1的左右两个焦点F1,F2,离心率为1/2,又抛物线C2:y^2=4mx(m>0)与椭圆C1有公共焦点F2(1,0)
1、求椭圆和抛物线的方程
2、设直线l经过椭圆的左焦点F1,且与抛物线交于不同两点P,Q且满足向量F1P=向量n(F1Q),求实数n的取值范围
优质解答
1、p/2=1,得4m=2p=4,则m=1,得抛物线为:y^2=4x.
由c=1,离心率e=c/a=1/2,得a=2,所以b^2=3,得椭圆为:x^2/4+y^2/3=1
2、(1)设直线l:x=my-1,P(x1,y1),Q(x2,y2),
则x=my-1与椭圆联立,得:
y1+y2=f(m)
y1*y2=g(m)
由向量F1P=n(向量F1Q)得y1=ny2
则y1+y2=(1+n)y2=f(m)得:y2=f(m)/(1+n)
y1*y2=n y2^2=g(m)
得:n (f(m)/(1+n))^2=g(m)
即:n/(1+n)^2=g(m)/(f(m))^2
由△>0得m范围,在求g(m)/(f(m))^2范围,
再解n/(1+n)^2的不等式可得n的范围是(-3,-1/3).
(2)直线为y=0时,易求得n=-1/3或-3,
综上:n∈[-3,-1/3].
1、p/2=1,得4m=2p=4,则m=1,得抛物线为:y^2=4x.
由c=1,离心率e=c/a=1/2,得a=2,所以b^2=3,得椭圆为:x^2/4+y^2/3=1
2、(1)设直线l:x=my-1,P(x1,y1),Q(x2,y2),
则x=my-1与椭圆联立,得:
y1+y2=f(m)
y1*y2=g(m)
由向量F1P=n(向量F1Q)得y1=ny2
则y1+y2=(1+n)y2=f(m)得:y2=f(m)/(1+n)
y1*y2=n y2^2=g(m)
得:n (f(m)/(1+n))^2=g(m)
即:n/(1+n)^2=g(m)/(f(m))^2
由△>0得m范围,在求g(m)/(f(m))^2范围,
再解n/(1+n)^2的不等式可得n的范围是(-3,-1/3).
(2)直线为y=0时,易求得n=-1/3或-3,
综上:n∈[-3,-1/3].
相关问答