精选问答
初二数学平行四边形知识点

2019-04-18

初二数学平行四边形知识点
优质解答
定义:有两组对边分别平行的四边形是平行四边形.
表示:平行四边形用符号“□ ”来表示.
平行四边形性质:
平行四边形对边相等;平行四边形对角相等;平行四边形对角线互相平分
平行四边结论:
⑴连接平行四边形各边的中点所得图形是平行四边形.
⑵如果一个四边形的对角线互相平分,那么连接这个四边形的中点所得图形是平行四边形.
⑶平行四边形的对角相等,两邻角互补.
⑷过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形.
⑸平行四边形是中心对称图形,对称中心是两对角线的交点.
平行四边形的面积等于底和高的积,即S□ABCD=ah,其中a可以是平行四边形的任何一边,h必须是a边到其对边的距离,即对应的高.
平行四边形的判定:
两组对边分别平行的四边形是平行四边形
两组对角分别相等的四边形是平行四边形
一组对边平行且相等的四边形是平行四边形
从对角线看:对角钱互相平分的四边形是平行四边形
从角看:两组对角分别相等的四边形是平行四边形.
若一条直线过平行四边形对角线的交点,则直线被一组对边截下的线段以对角线的交点为中点,且这条直线二等分平行四边形的面积.
特殊的平行四边形
1矩形:有一个角是直角的平行四边形叫做矩形,也说是长方形
矩形的性质:
矩形的四个角都是直角;矩形的对角线相等
矩形的对角线相等且互相平分.
特别提示:直角三角形斜边上的中线等于斜边的一半
矩形具有平行四边形的一切性质
矩形的判定方法
有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形
有三个角是直角的四边形是矩形
2菱形:有一组邻边相等的平行四边形叫做菱形(菱形是平行四边形:一组邻边相等)
性质:
菱形的四条边都相等
菱形的两条对角线互相垂直平分,并且每一条对角线平分一组对角.
菱形的判定方法:
一组邻边相等的平行四边形是菱形
对角线互相垂直平分的平行四边形是菱形
对角线互相垂直平分的四边形是菱形
四条边都相等的四边形是菱形
3正方形:
定义:四条边都相等,四个角都是直角的四边形是正方形.
性质:正方形既有矩形的性质,又有菱形的性质.
正方形是轴对称图形,其对称轴为对边中点所在的直线或对角线所在的直线,也是中心对称图形,对称中心为对角线的交点.
定义:有两组对边分别平行的四边形是平行四边形.
表示:平行四边形用符号“□ ”来表示.
平行四边形性质:
平行四边形对边相等;平行四边形对角相等;平行四边形对角线互相平分
平行四边结论:
⑴连接平行四边形各边的中点所得图形是平行四边形.
⑵如果一个四边形的对角线互相平分,那么连接这个四边形的中点所得图形是平行四边形.
⑶平行四边形的对角相等,两邻角互补.
⑷过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形.
⑸平行四边形是中心对称图形,对称中心是两对角线的交点.
平行四边形的面积等于底和高的积,即S□ABCD=ah,其中a可以是平行四边形的任何一边,h必须是a边到其对边的距离,即对应的高.
平行四边形的判定:
两组对边分别平行的四边形是平行四边形
两组对角分别相等的四边形是平行四边形
一组对边平行且相等的四边形是平行四边形
从对角线看:对角钱互相平分的四边形是平行四边形
从角看:两组对角分别相等的四边形是平行四边形.
若一条直线过平行四边形对角线的交点,则直线被一组对边截下的线段以对角线的交点为中点,且这条直线二等分平行四边形的面积.
特殊的平行四边形
1矩形:有一个角是直角的平行四边形叫做矩形,也说是长方形
矩形的性质:
矩形的四个角都是直角;矩形的对角线相等
矩形的对角线相等且互相平分.
特别提示:直角三角形斜边上的中线等于斜边的一半
矩形具有平行四边形的一切性质
矩形的判定方法
有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形
有三个角是直角的四边形是矩形
2菱形:有一组邻边相等的平行四边形叫做菱形(菱形是平行四边形:一组邻边相等)
性质:
菱形的四条边都相等
菱形的两条对角线互相垂直平分,并且每一条对角线平分一组对角.
菱形的判定方法:
一组邻边相等的平行四边形是菱形
对角线互相垂直平分的平行四边形是菱形
对角线互相垂直平分的四边形是菱形
四条边都相等的四边形是菱形
3正方形:
定义:四条边都相等,四个角都是直角的四边形是正方形.
性质:正方形既有矩形的性质,又有菱形的性质.
正方形是轴对称图形,其对称轴为对边中点所在的直线或对角线所在的直线,也是中心对称图形,对称中心为对角线的交点.
相关标签: 初二 数学 知识点
相关问答