优质解答
向量的点积与叉积有何物理意义
答:已知向量a和向量b,它们的点积a•b=︱a︱︱b︱cosθ,其中 θ是a,b的夹角.在物理里,
点积用来表示力所作的功.当力F与质点的位移S有夹角θ时,力F所作的功W=︱F︱︱S︱cosθ
=F•S,功是数量,故点积又称数量积,无向积等.
两个向量的叉积a×b=︱a︱︱b︱sinθ,其中 θ是a,b的夹角.在力学里,用叉积表示一个力对
一个定点的矩M=r×F,当F与向径r不垂直时,二者有个夹角θ,那么︱M︱=︱r︱︱F︱sinθ,力
矩M是向量,因此叉积又称向量积,有向积等;C= A×B,C的方向用右手法则规定:将三个向量
A,B,C附着于同一个起点,把右手的拇指顺着A的方向,食指顺着B的方向,则中指的指向就是
C的方向.
向量的点积与叉积有何物理意义
答:已知向量a和向量b,它们的点积a•b=︱a︱︱b︱cosθ,其中 θ是a,b的夹角.在物理里,
点积用来表示力所作的功.当力F与质点的位移S有夹角θ时,力F所作的功W=︱F︱︱S︱cosθ
=F•S,功是数量,故点积又称数量积,无向积等.
两个向量的叉积a×b=︱a︱︱b︱sinθ,其中 θ是a,b的夹角.在力学里,用叉积表示一个力对
一个定点的矩M=r×F,当F与向径r不垂直时,二者有个夹角θ,那么︱M︱=︱r︱︱F︱sinθ,力
矩M是向量,因此叉积又称向量积,有向积等;C= A×B,C的方向用右手法则规定:将三个向量
A,B,C附着于同一个起点,把右手的拇指顺着A的方向,食指顺着B的方向,则中指的指向就是
C的方向.