政治
如何在中学数学教学中渗透数学建模思想

2019-04-15

如何在中学数学教学中渗透数学建模思想
优质解答
中学数学教学中数学建模思想的渗透
/郑来兵
[导读]新课程标准明确提出中学数学要讲背景、讲应用.
一、数学建模与数学建模意识
在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的.其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现.也就是说,你要对复杂的实际问题进行分析,发现其中可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型,建立数学模型的这个过程就称为数学建模.著名数学家怀特海曾说:“数学就是对于模式的研究”.所谓数学模型,是指对于现实世界的某一特定研究对象,为了某个特定的目的,在做了一些必要的简化假设,运用适当的数学工具,并通过数学语言表述出来的一个数学结构.数学中的各种基本概念,都以各自相应的现实原型作为背景而抽象出来的数学概念.各种数学公式、方程式、定理、理论体系等等,都是一些具体的数学模型. 举个简单的例子,二次函数就是一个数学模型,很多数学问题甚至实际问题(自由落体运动)都可以转化为二次函数来解决.而通过对问题数学化,模型构建,求解检验使问题获得解决的方法称之为数学模型方法.我们的数学教学说到底实际上就是教给学生前人给我们构建的一个个数学模型和怎样构建模型的思想方法,以使学生能运用数学模型解决数学问题和实际问题.由此,我们可以看到,培养学生运用数学建模解决实际问题的能力,关键是把实际问题抽象为数学问题,必须首先通过观察分析、提炼出实际问题的数学模型,然后再把数学模型纳入某知识系统去处理,这不但要求学生有一定的抽象能力,而且要有相当的观察、分析、综合、类比能力.学生这种能力的获得不是一朝一夕的事情,需要把数学建模意识贯穿在教学的始终,也就是要不断地引导学生用数学思维的观点去观察、分析和表示各种事物的关系、空间关系和数学信息,从纷繁复杂的具体问题中抽象出我们熟悉的数学模型,进而达到用数学模型来解决实际问题,使数学建模意识成为学生思考问题的方法和习惯.具体的讲,数学模型方法的操作程序大致上为:
? 实际问题→分析抽象→建立模型→数学问题 ?↑?↓ ?检验 ← 实际解 ← 释译 ← 数学解
二、在数学建模活动中要充分重视学生的主体性
提高学生的主体意识是新课程改革的基本要求.在课堂教学中真正落实学生的主体地位,让学生真正成为数学课堂的主人,促进学生自主地发展,是现代数学课堂的重要标志,是高中数学素质教育的核心思想,也是全面实施素质教育的关键.中学数学建模活动旨在培养学生的探究能力和独立解决问题的能力,学生是建模的主体,学生在进行建模活动过程中表现出的主体性表现为自主完成建模任务和在建模活动中的互相协作性.中学生具有好奇、好问、好动、好胜、好玩的心理特点,思维开始从经验型走向理论型,出现了思维的独立性和批判性,表现为喜欢独立思考、寻根究底和质疑争辩.因此,教师在课堂上应该让学生充分进行自主体验,在数学建模的实践中运用这些数学知识,感受和体验数学的应用价值.教师可作适当的点拨指导,但要重视学生的参与过程和主体意识,不能越俎代庖,目的是提高学生进行探究性学习的能力、提高学生学习数学的兴趣. 三、处理好数学建模的过程与结果的关系
我国的中学数学新课程改革已进入全面实施阶段.新的高中数学课程标准强调要拓宽学生的数学知识面,改善学生的学习方式,关注学生的学习情感和情绪体验,培养学生进行探究性学习的习惯和能力.数学建模活动是一种使学生在探究性活动中受到数学教育的学习方式,是运用已有的数学知识解决问题的教与学的双边活动,是学生围绕某个数学问题自主探究、学习的过程.新的高中数学课程标准要求把数学探究、数学建模的思想以不同的形式渗透在各模块和专题内容之中,突出强调建立科学探究的学习方式,让学生通过探究活动来学习数学知识和方法,增进对数学的理解,体验探究的乐趣.比如正方体截面切割的形状,用一个平面去截正方体,截面的形状是什么样的?
学习目标:通过想象和操作,探究正方体截面的形状. 问题串:
1.给出分类的原则(例如:按截面图形的边数分类).按照你的分类原则,能得到多少种不同的截面?设计一种方案,找到截得这些形状截面的方法,并在正方体中画出示意图.
2.如果截面是三角形,你认为可以截出几种不同的三角形? 3.如果截面是四边形,你认为可以截出几种不同的四边形? 4.证明上面的结果.
5.截面多边形的边数最多有几条?请说明理由.
6.截面可能是正方形吗?可能有几种?画出示意图. 7.如果截面是三角形,其面积最大是多少?画出示意图. 8.你还能提出哪些相关的数学问题?
这个问题就可以根据不同的学生提出不同的要求,如:利用土豆、萝卜或橡皮泥通过切割实验进行研究;用透明材料制作一个中空的正方体,留出注水口,注入有色水,通过观察水面形状的方式进行实验研究;利用电脑或图形计算器.借助某些软件(如几何画板,Z+Z智能平台)进行模拟实验研究;空间想象;证明你的结论.
四、数学建模教学与素质教育 数学建模问题贴近实际生活,往往一个问题有很多种思路,有较强的趣味性、灵活性,能激发学生的学习兴趣,可以触发不同水平的学生在不同层次上的创造性,使他们有各自的收获和成功的体验.由于给了学生一个纵情创造的空间,就为学生提供了展示其创造才华的机会,从而促进学生素质能力的培养和提高,对中学素质教育起到积极推动作用.
1.构建建模意识,培养学生的转换能力
恩格斯曾说过:“由一种形式转化为另一种形式不是无聊的游戏而是数学的杠杆,如果没有它,就不能走很远.”由于数学建模就是把实际问题转换成数学问题,因此如果我们在数学教学中注重转化,用好这根有力的杠杆,对培养学生思维品质的灵活性、创造性及开发智力、培养能力、提高解题速度是十分有益的.学生对问题的研究过程,无疑会激发其学习数学的主动性,且能开拓学生的创造性思维能力,养成善于发现问题、独立思考的习惯.教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识.
如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大? 这是培养创新意识及实践能力的好时机,要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法提出新知识,激发学生的求知欲,但不可挫伤学生的积极性,失去“亮点”.
这样通过章前问题教学,学生明白了数学就是学习、研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识.因此,要重视章前问题的教学,还可据实际需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生的数学建模意识. 2.注重直觉思维,培养学生的想象能力
众所周知,数学史上不少的数学发现都来源于直觉思维,如笛卡尔坐标系、歌德巴赫猜想等,应该说它们不是任何逻辑思维的产物,而是数学家通过观察、比较、领悟、突发灵感发现的.通过数学建模教学,使学生有独到的见解和与众不同的思考方法,如善于发现问题,沟通各类知识之间的内在联系等是培养学生创新思维的核心.七年级的教材里,以游戏的方式编排了简单而有趣的概率知识,如转盘游戏,扔硬币来验证出现正面或反面的概率等等.通过有趣的游戏,激起了学生学习的兴趣,并了解到概率统计知识在社会中应用的广泛性和重要性. 3.灌输“构造”思想,培养学生的创新能力
“一个好的数学家与一个蹩脚的数学家之间的差别,就在于前者有许多具体的例子,而后者则只有抽象的理论.”我们前面讲到,“建模”就是构造模型,但模型的构造并不是一件容易的事,又需要有足够强的构造能力,而学生构造能力的提高则是学生创造性思维和创造能力的基础:创造性地使用已知条件,创造性地应用数学知识. 当然,数学建模在现在的中学数学教育中的地位和作用更加重要.但究竟如何在中学搞好数学建模活动,更好地发挥数学建模的作用,仍将是一个漫长而曲折的过程,是我们广大中学教师和教育工作者所思考和探索的问题.
中学数学教学中数学建模思想的渗透
/郑来兵
[导读]新课程标准明确提出中学数学要讲背景、讲应用.
一、数学建模与数学建模意识
在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的.其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现.也就是说,你要对复杂的实际问题进行分析,发现其中可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型,建立数学模型的这个过程就称为数学建模.著名数学家怀特海曾说:“数学就是对于模式的研究”.所谓数学模型,是指对于现实世界的某一特定研究对象,为了某个特定的目的,在做了一些必要的简化假设,运用适当的数学工具,并通过数学语言表述出来的一个数学结构.数学中的各种基本概念,都以各自相应的现实原型作为背景而抽象出来的数学概念.各种数学公式、方程式、定理、理论体系等等,都是一些具体的数学模型. 举个简单的例子,二次函数就是一个数学模型,很多数学问题甚至实际问题(自由落体运动)都可以转化为二次函数来解决.而通过对问题数学化,模型构建,求解检验使问题获得解决的方法称之为数学模型方法.我们的数学教学说到底实际上就是教给学生前人给我们构建的一个个数学模型和怎样构建模型的思想方法,以使学生能运用数学模型解决数学问题和实际问题.由此,我们可以看到,培养学生运用数学建模解决实际问题的能力,关键是把实际问题抽象为数学问题,必须首先通过观察分析、提炼出实际问题的数学模型,然后再把数学模型纳入某知识系统去处理,这不但要求学生有一定的抽象能力,而且要有相当的观察、分析、综合、类比能力.学生这种能力的获得不是一朝一夕的事情,需要把数学建模意识贯穿在教学的始终,也就是要不断地引导学生用数学思维的观点去观察、分析和表示各种事物的关系、空间关系和数学信息,从纷繁复杂的具体问题中抽象出我们熟悉的数学模型,进而达到用数学模型来解决实际问题,使数学建模意识成为学生思考问题的方法和习惯.具体的讲,数学模型方法的操作程序大致上为:
? 实际问题→分析抽象→建立模型→数学问题 ?↑?↓ ?检验 ← 实际解 ← 释译 ← 数学解
二、在数学建模活动中要充分重视学生的主体性
提高学生的主体意识是新课程改革的基本要求.在课堂教学中真正落实学生的主体地位,让学生真正成为数学课堂的主人,促进学生自主地发展,是现代数学课堂的重要标志,是高中数学素质教育的核心思想,也是全面实施素质教育的关键.中学数学建模活动旨在培养学生的探究能力和独立解决问题的能力,学生是建模的主体,学生在进行建模活动过程中表现出的主体性表现为自主完成建模任务和在建模活动中的互相协作性.中学生具有好奇、好问、好动、好胜、好玩的心理特点,思维开始从经验型走向理论型,出现了思维的独立性和批判性,表现为喜欢独立思考、寻根究底和质疑争辩.因此,教师在课堂上应该让学生充分进行自主体验,在数学建模的实践中运用这些数学知识,感受和体验数学的应用价值.教师可作适当的点拨指导,但要重视学生的参与过程和主体意识,不能越俎代庖,目的是提高学生进行探究性学习的能力、提高学生学习数学的兴趣. 三、处理好数学建模的过程与结果的关系
我国的中学数学新课程改革已进入全面实施阶段.新的高中数学课程标准强调要拓宽学生的数学知识面,改善学生的学习方式,关注学生的学习情感和情绪体验,培养学生进行探究性学习的习惯和能力.数学建模活动是一种使学生在探究性活动中受到数学教育的学习方式,是运用已有的数学知识解决问题的教与学的双边活动,是学生围绕某个数学问题自主探究、学习的过程.新的高中数学课程标准要求把数学探究、数学建模的思想以不同的形式渗透在各模块和专题内容之中,突出强调建立科学探究的学习方式,让学生通过探究活动来学习数学知识和方法,增进对数学的理解,体验探究的乐趣.比如正方体截面切割的形状,用一个平面去截正方体,截面的形状是什么样的?
学习目标:通过想象和操作,探究正方体截面的形状. 问题串:
1.给出分类的原则(例如:按截面图形的边数分类).按照你的分类原则,能得到多少种不同的截面?设计一种方案,找到截得这些形状截面的方法,并在正方体中画出示意图.
2.如果截面是三角形,你认为可以截出几种不同的三角形? 3.如果截面是四边形,你认为可以截出几种不同的四边形? 4.证明上面的结果.
5.截面多边形的边数最多有几条?请说明理由.
6.截面可能是正方形吗?可能有几种?画出示意图. 7.如果截面是三角形,其面积最大是多少?画出示意图. 8.你还能提出哪些相关的数学问题?
这个问题就可以根据不同的学生提出不同的要求,如:利用土豆、萝卜或橡皮泥通过切割实验进行研究;用透明材料制作一个中空的正方体,留出注水口,注入有色水,通过观察水面形状的方式进行实验研究;利用电脑或图形计算器.借助某些软件(如几何画板,Z+Z智能平台)进行模拟实验研究;空间想象;证明你的结论.
四、数学建模教学与素质教育 数学建模问题贴近实际生活,往往一个问题有很多种思路,有较强的趣味性、灵活性,能激发学生的学习兴趣,可以触发不同水平的学生在不同层次上的创造性,使他们有各自的收获和成功的体验.由于给了学生一个纵情创造的空间,就为学生提供了展示其创造才华的机会,从而促进学生素质能力的培养和提高,对中学素质教育起到积极推动作用.
1.构建建模意识,培养学生的转换能力
恩格斯曾说过:“由一种形式转化为另一种形式不是无聊的游戏而是数学的杠杆,如果没有它,就不能走很远.”由于数学建模就是把实际问题转换成数学问题,因此如果我们在数学教学中注重转化,用好这根有力的杠杆,对培养学生思维品质的灵活性、创造性及开发智力、培养能力、提高解题速度是十分有益的.学生对问题的研究过程,无疑会激发其学习数学的主动性,且能开拓学生的创造性思维能力,养成善于发现问题、独立思考的习惯.教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识.
如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大? 这是培养创新意识及实践能力的好时机,要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法提出新知识,激发学生的求知欲,但不可挫伤学生的积极性,失去“亮点”.
这样通过章前问题教学,学生明白了数学就是学习、研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识.因此,要重视章前问题的教学,还可据实际需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生的数学建模意识. 2.注重直觉思维,培养学生的想象能力
众所周知,数学史上不少的数学发现都来源于直觉思维,如笛卡尔坐标系、歌德巴赫猜想等,应该说它们不是任何逻辑思维的产物,而是数学家通过观察、比较、领悟、突发灵感发现的.通过数学建模教学,使学生有独到的见解和与众不同的思考方法,如善于发现问题,沟通各类知识之间的内在联系等是培养学生创新思维的核心.七年级的教材里,以游戏的方式编排了简单而有趣的概率知识,如转盘游戏,扔硬币来验证出现正面或反面的概率等等.通过有趣的游戏,激起了学生学习的兴趣,并了解到概率统计知识在社会中应用的广泛性和重要性. 3.灌输“构造”思想,培养学生的创新能力
“一个好的数学家与一个蹩脚的数学家之间的差别,就在于前者有许多具体的例子,而后者则只有抽象的理论.”我们前面讲到,“建模”就是构造模型,但模型的构造并不是一件容易的事,又需要有足够强的构造能力,而学生构造能力的提高则是学生创造性思维和创造能力的基础:创造性地使用已知条件,创造性地应用数学知识. 当然,数学建模在现在的中学数学教育中的地位和作用更加重要.但究竟如何在中学搞好数学建模活动,更好地发挥数学建模的作用,仍将是一个漫长而曲折的过程,是我们广大中学教师和教育工作者所思考和探索的问题.
相关标签: 中学数学 教学 数学 建模 思想
相关问答