数学
所谓的9+9 7+7 5+5 1900年,20世纪最伟大的数学家希尔伯特,在国际数学会议上把“哥德巴赫猜想”列为23个数学难题之一.此后,20世纪的数学家们在世界范围内“联手”进攻“哥德巴赫猜想”堡垒,终于取得了辉煌的成果.20世纪的数学家们研究哥德巴赫猜想所采用的主要方法,是筛法、圆法、密率法和三角和法等等高深的数学方法.解决这个猜想的思路,就像“缩小包围圈”一样,逐步逼近最后的结果.1920年,挪威数学家布朗证明了定理“9+9”,由此划定了进攻“哥德巴赫猜想”的“大包围圈”.这个“9+9”是怎么回事呢

2019-04-13

所谓的9+9 7+7 5+5
1900年,20世纪最伟大的数学家希尔伯特,在国际数学会议上把“哥德巴赫猜想”列为23个数学难题之一.此后,20世纪的数学家们在世界范围内“联手”进攻“哥德巴赫猜想”堡垒,终于取得了辉煌的成果.20世纪的数学家们研究哥德巴赫猜想所采用的主要方法,是筛法、圆法、密率法和三角和法等等高深的数学方法.解决这个猜想的思路,就像“缩小包围圈”一样,逐步逼近最后的结果.1920年,挪威数学家布朗证明了定理“9+9”,由此划定了进攻“哥德巴赫猜想”的“大包围圈”.这个“9+9”是怎么回事呢?所谓“9+9”,翻译成数学语言就是:“任何一个足够大的偶数,都可以表示成其它两个数之和,而这两个数中的每个数,都是9个奇质数之积.” 从这个“9+9”开始,全世界的数学家集中力量“缩小包围圈”,当然最后的目标就是“1+1”了.1924年,德国数学家雷德马赫证明了定理“7+7”.很快,“6+6”、“5+5”、“4+4”和“3+3”逐一被攻陷.1957年,我国数学家王元证明了“2+3”.1962年,中国数学家潘承洞证明了“1+5”,同年又和王元合作证明了“1+4”.1965年,苏联数学家证明了“1+3”.1966年,我国著名数学家陈景润攻克了“1+2”,也就是:“任何一个足够大的偶数,都可以表示成两个数之和,而这两个数中的一个就是奇质数,另一个则是两个奇质数的积.”这个定理被世界数学界称为“陈氏定理”.由于陈景润的贡献,人类距离哥德巴赫猜想的最后结果“1+1”仅有一步之遥了.但为了实现这最后的一步,也许还要历经一个漫长的探索过程.有许多数学家认为,要想证明“1+1”,必须通过创造新的数学方法,以往的路很可能都是走不通的.
优质解答
1至2N-1的N个正奇数作成正奇数谱2NG,只含三种可计算的数:1、单位元1恒为1
个,2、小于√2N的有子质数vP构造的iP首奇数集iPc是k项,3、大于√2N的无子质数
集wP是 1项.由此而得顺逆两条2NG齐头相并成N对二数和皆等于2N的数谱,所得也只
含三种可计算的数对:1、边缘数对1~2N-1和2N-1~1恒为2对,2、iPc数对iPc2是k
项,3、wP+wP=2N数对wP2是1项.若以分布比来考察除去边缘数对后N-2对数的性质,诸
iPc2的分布比1Pc2L、2Pc2L、…kPc2L同模为联分数列1∨2/iP*`i-1`∏1P∈3(1-1∨2/vP),
通过数学归纳法证明,k项联分数列的(级数)和与wP2分布比wP2L恒对“1”互余为
1-k∑1P∈3:1∨2/iP*`i-1`∏1P∈3(1-1∨2/vP)=k∏1P∈3:(1-1∨2/vP)>1/kP_(1),
其中,kP<√2N ,iP整除2N取 1∨2/iP=1/iP,反则取 1∨2/iP=2/iP.据(1)等号右边所
表示wP2L>1/kP就从理论上证明歌德巴赫偶数1+1猜想成立.
````若以G(2N)表示数谱wP2数对的含量,则从G(6)=1、G(8)=2、G(10)≈1、G(12)≈2、…
到2N→∞皆可概算
G(2N)≈(N-2)×k∏1P∈3(1-1∨2/vP)_(2).
据(2),偶数从6起所含1+1对数总数、G(2N)实迹数与理论计算数,我们可用编程通过电脑
作成如下述的收索与计算对照验证表↓
2N``2N```2N```2N`````2N含``2N
的``含的`前的`含的````的```含的
原``数谱`iP````iP````1+1```G(2N)```公式计算G(2N)≈
值``有效`数```情况``总数```对数````(N-2)×k∏i∈1P (1-2∨1/P)
````对数`表述`显示``显示```实迹````的计算程式和理论对数与误差表述
06``1`````无```无````1`````1≈`````1×(1-0)```==1
08``2`````无```无````2`````2≈`````2×(1-0)```==2
10``3`````3````无````3`````1≈`````3×(1-2/3)==1
12``4`````3````3`````2`````2≈`````4×(1-1/3)≈2
14``5`````3````无````3`````1≈`````5×(1-2/3)≈1
16``6`````3````无````4`````2≈`````6×(1-2/3)==2
18``7`````3````3`````4`````4≈`````7×(1-1/3)≈4
20``8`````3````无````4`````2≈`````8×(1-2/3)≈2
22``9`````3````无````5`````3≈`````9×(1-2/3)==3
24``10````3````3`````6`````6≈````10×(1-1/3)≈6
26``11```3`5```无````5`````3≈````11×(1-2/3)(1-2/5)≈2,误差1对
28``12```3`5```无````4`````2≈````12×(1-2/3)(1-2/5)≈2
30``13```3`5``3`5````6`````6≈````13×(1-1/3)(1-1/5)≈6
32``14```3`5```无````4`````2≈````14×(1-2/3)(1-2/5)≈2
34``15```3`5```无````7`````3≈````15×(1-2/3)(1-2/5)==3
36``16```3`5```3`````6`````6≈````16×(1-1/3)(1-2/5)≈6
38``17```3`5```无````3`````3≈````17×(1-2/3)(1-2/5)≈3
40``18```3`5```5`````6`````4≈````18×(1-2/3)(1-1/5)≈4
42``19```3`5```3`````8`````6≈````19×(1-1/3)(1-2/5)≈6
44``20```3`5```无````6`````4≈````20×(1-2/3)(1-2/5)==4
46``21```3`5```无````7`````3≈````21×(1-2/3)(1-2/5)≈4,误差1对
48``22```3`5```3`````10````8≈````22×(1-1/3)(1-2/5)≈8
50``23``3`5`7``5`````8`````4≈````23×(1-2/3)(1-1/5)(1-2/7)≈4
52``24``3`5`7``无````6`````4≈````24×(1-2/3)(1-2/5)(1-2/7)≈3,误差1对
54``25``3`5`7``3`````10````8≈````25×(1-1/3)(1-2/5)(1-2/7)≈7,误差1对
56``26``3`5`7``7`````6`````4≈````26×(1-2/3)(1-2/5)(1-1/7)≈4
……
其中,将2N=6起所含G(2N)实迹数与理论计算数作成曲线对比图时,二条曲线互有正负误
差而成鸳鸯吻交织,同以秧歌步向无限大推进,其间无反例出现,据(1)理论表述和(2)计算
验证,歌德巴赫偶数1+1猜想成立得证.
1至2N-1的N个正奇数作成正奇数谱2NG,只含三种可计算的数:1、单位元1恒为1
个,2、小于√2N的有子质数vP构造的iP首奇数集iPc是k项,3、大于√2N的无子质数
集wP是 1项.由此而得顺逆两条2NG齐头相并成N对二数和皆等于2N的数谱,所得也只
含三种可计算的数对:1、边缘数对1~2N-1和2N-1~1恒为2对,2、iPc数对iPc2是k
项,3、wP+wP=2N数对wP2是1项.若以分布比来考察除去边缘数对后N-2对数的性质,诸
iPc2的分布比1Pc2L、2Pc2L、…kPc2L同模为联分数列1∨2/iP*`i-1`∏1P∈3(1-1∨2/vP),
通过数学归纳法证明,k项联分数列的(级数)和与wP2分布比wP2L恒对“1”互余为
1-k∑1P∈3:1∨2/iP*`i-1`∏1P∈3(1-1∨2/vP)=k∏1P∈3:(1-1∨2/vP)>1/kP_(1),
其中,kP<√2N ,iP整除2N取 1∨2/iP=1/iP,反则取 1∨2/iP=2/iP.据(1)等号右边所
表示wP2L>1/kP就从理论上证明歌德巴赫偶数1+1猜想成立.
````若以G(2N)表示数谱wP2数对的含量,则从G(6)=1、G(8)=2、G(10)≈1、G(12)≈2、…
到2N→∞皆可概算
G(2N)≈(N-2)×k∏1P∈3(1-1∨2/vP)_(2).
据(2),偶数从6起所含1+1对数总数、G(2N)实迹数与理论计算数,我们可用编程通过电脑
作成如下述的收索与计算对照验证表↓
2N``2N```2N```2N`````2N含``2N
的``含的`前的`含的````的```含的
原``数谱`iP````iP````1+1```G(2N)```公式计算G(2N)≈
值``有效`数```情况``总数```对数````(N-2)×k∏i∈1P (1-2∨1/P)
````对数`表述`显示``显示```实迹````的计算程式和理论对数与误差表述
06``1`````无```无````1`````1≈`````1×(1-0)```==1
08``2`````无```无````2`````2≈`````2×(1-0)```==2
10``3`````3````无````3`````1≈`````3×(1-2/3)==1
12``4`````3````3`````2`````2≈`````4×(1-1/3)≈2
14``5`````3````无````3`````1≈`````5×(1-2/3)≈1
16``6`````3````无````4`````2≈`````6×(1-2/3)==2
18``7`````3````3`````4`````4≈`````7×(1-1/3)≈4
20``8`````3````无````4`````2≈`````8×(1-2/3)≈2
22``9`````3````无````5`````3≈`````9×(1-2/3)==3
24``10````3````3`````6`````6≈````10×(1-1/3)≈6
26``11```3`5```无````5`````3≈````11×(1-2/3)(1-2/5)≈2,误差1对
28``12```3`5```无````4`````2≈````12×(1-2/3)(1-2/5)≈2
30``13```3`5``3`5````6`````6≈````13×(1-1/3)(1-1/5)≈6
32``14```3`5```无````4`````2≈````14×(1-2/3)(1-2/5)≈2
34``15```3`5```无````7`````3≈````15×(1-2/3)(1-2/5)==3
36``16```3`5```3`````6`````6≈````16×(1-1/3)(1-2/5)≈6
38``17```3`5```无````3`````3≈````17×(1-2/3)(1-2/5)≈3
40``18```3`5```5`````6`````4≈````18×(1-2/3)(1-1/5)≈4
42``19```3`5```3`````8`````6≈````19×(1-1/3)(1-2/5)≈6
44``20```3`5```无````6`````4≈````20×(1-2/3)(1-2/5)==4
46``21```3`5```无````7`````3≈````21×(1-2/3)(1-2/5)≈4,误差1对
48``22```3`5```3`````10````8≈````22×(1-1/3)(1-2/5)≈8
50``23``3`5`7``5`````8`````4≈````23×(1-2/3)(1-1/5)(1-2/7)≈4
52``24``3`5`7``无````6`````4≈````24×(1-2/3)(1-2/5)(1-2/7)≈3,误差1对
54``25``3`5`7``3`````10````8≈````25×(1-1/3)(1-2/5)(1-2/7)≈7,误差1对
56``26``3`5`7``7`````6`````4≈````26×(1-2/3)(1-2/5)(1-1/7)≈4
……
其中,将2N=6起所含G(2N)实迹数与理论计算数作成曲线对比图时,二条曲线互有正负误
差而成鸳鸯吻交织,同以秧歌步向无限大推进,其间无反例出现,据(1)理论表述和(2)计算
验证,歌德巴赫偶数1+1猜想成立得证.
相关标签: 所谓 伟大 数学家 国际 数学 会议 哥德巴赫猜想 难题 世界 范围
相关问答