数学
证明:两条平行线被第三条直线所截,一组同位角的角平分线互相平行.

2019-06-01

证明:两条平行线被第三条直线所截,一组同位角的角平分线互相平行.
优质解答
已知:如图,AB∥CD,HI与AB,CD分别交于点M、N,EM,FN分别是∠AMH,∠CNH的平分线.求证:EM∥FN.
证明:
∵AB∥CD,
∴∠AMH=∠CNH(两直线平行,同位角相等),
∵EM,FN分别是∠AMH,∠CNH的平分线,
∴∠1=
1
2
∠AMH,∠2=
1
2
∠CNH,
∴∠1=∠2,
∴EM∥FN(同位角相等,两直线平行).
已知:如图,AB∥CD,HI与AB,CD分别交于点M、N,EM,FN分别是∠AMH,∠CNH的平分线.求证:EM∥FN.
证明:
∵AB∥CD,
∴∠AMH=∠CNH(两直线平行,同位角相等),
∵EM,FN分别是∠AMH,∠CNH的平分线,
∴∠1=
1
2
∠AMH,∠2=
1
2
∠CNH,
∴∠1=∠2,
∴EM∥FN(同位角相等,两直线平行).
相关问答