高中数学求圆截直线的弦长和圆锥曲线的弦长通常求法上有什么区别呢?还有那个跟斜率有关的弦长公式是啥?怎么推导的?
2019-05-27
高中数学求圆截直线的弦长和圆锥曲线的弦长通常求法上有什么区别呢?还有那个跟斜率有关的弦长公式是啥?怎么推导的?
优质解答
圆截直线的弦长可通过圆心到直线的距离及半径来求出半弦长,再乘2.(勾股定理)
圆锥曲线的弦长一般用联立方程组来求.
弦长公式:d = √(1+k²)|x1-x2| = √(1+k²)[(x1+x2)² - 4x1x2] = √(1+1/k²)|y1-y2| = √(1+1/k²)[(y1+y2)² - 4y1y2
推导:设直线方程为y=kx+b,两曲线的交点为(X1,Y1),(X2,Y2),Y1=kX1+b
d2=(X1-X2)²+(Y1-Y2)²=(X1-X2)²+[(kX1+b)—(kX2+b)]² =(X1-X2)²+k²(X1-X2)²
= (1+k²)(x1-x2)² = (1+k²)[(x1+x2)²-4X1X2]
即d = √(1+k²)|x1-x2| = √(1+k²)[(x1+x2)² - 4x1x2],同理可得d = √(1+k²)|x1-x2| = √(1+1/k²)|y1-y2| = √(1+1/k²)[(y1+y2)² - 4y1y2
这是我个人的理解,较简单,
圆截直线的弦长可通过圆心到直线的距离及半径来求出半弦长,再乘2.(勾股定理)
圆锥曲线的弦长一般用联立方程组来求.
弦长公式:d = √(1+k²)|x1-x2| = √(1+k²)[(x1+x2)² - 4x1x2] = √(1+1/k²)|y1-y2| = √(1+1/k²)[(y1+y2)² - 4y1y2
推导:设直线方程为y=kx+b,两曲线的交点为(X1,Y1),(X2,Y2),Y1=kX1+b
d2=(X1-X2)²+(Y1-Y2)²=(X1-X2)²+[(kX1+b)—(kX2+b)]² =(X1-X2)²+k²(X1-X2)²
= (1+k²)(x1-x2)² = (1+k²)[(x1+x2)²-4X1X2]
即d = √(1+k²)|x1-x2| = √(1+k²)[(x1+x2)² - 4x1x2],同理可得d = √(1+k²)|x1-x2| = √(1+1/k²)|y1-y2| = √(1+1/k²)[(y1+y2)² - 4y1y2
这是我个人的理解,较简单,