1.设T是三维空间的一个合同变换,v和w是该三维空间的两个向量,求(Tv)∧(Tw)与T(v∧w)的关系2.椭圆方程的标准形式 就是a分之x平方加上b分之y平方等于1,求这个曲线的弧长
2019-05-07
1.设T是三维空间的一个合同变换,v和w是该三维空间的两个向量,求(Tv)∧(Tw)与T(v∧w)的关系
2.椭圆方程的标准形式 就是a分之x平方加上b分之y平方等于1,求这个曲线的弧长
优质解答
第二题只能用积分表示一下,是积不出来的,被称为“椭圆函数”,在代数几何中有重要的应用.所以,你就别指望有人能帮你得到具体答案了.
第一题结论是:当T是刚体运动时,二者相等;当T是反向刚体运动时,二者相差一个负号.具体证明只能硬功夫算,就是都用坐标表示出来,把T也用矩阵表示,注意向量被T变换的时候没有平移了,然后比较.很复杂,但是直路子,计算时候细心也就ok了.也可能有简单方法.
第二题只能用积分表示一下,是积不出来的,被称为“椭圆函数”,在代数几何中有重要的应用.所以,你就别指望有人能帮你得到具体答案了.
第一题结论是:当T是刚体运动时,二者相等;当T是反向刚体运动时,二者相差一个负号.具体证明只能硬功夫算,就是都用坐标表示出来,把T也用矩阵表示,注意向量被T变换的时候没有平移了,然后比较.很复杂,但是直路子,计算时候细心也就ok了.也可能有简单方法.