数学兴趣小组开展了一次课外活动,过程如下:如图①,正方形ABCD中,AB=6,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合,三角板的一边交AB于点P,另一边交BC的延长线于点Q.(1)求证:AP=CQ;(2)如图②,小明在图①的基础上作∠PDQ的平分线DE交BC于点E,连接PE,他发现PE和QE存在一定的数量关系,请猜测他的结论并证明.(3)如图③,固定三角板直角顶点在D点不动,转到三角板,使三角板的一边交AB的延长线于点P,另一边交BC的延长线于点Q,仍作∠PDQ的平分线DE交BC的延长线
2019-06-02
数学兴趣小组开展了一次课外活动,过程如下:
如图①,正方形ABCD中,AB=6,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合,三角板的一边交AB于点P,另一边交BC的延长线于点Q.
(1)求证:AP=CQ;
(2)如图②,小明在图①的基础上作∠PDQ的平分线DE交BC于点E,连接PE,他发现PE和QE存在一定的数量关系,请猜测他的结论并证明.
(3)如图③,固定三角板直角顶点在D点不动,转到三角板,使三角板的一边交AB的延长线于点P,另一边交BC的延长线于点Q,仍作∠PDQ的平分线DE交BC的延长线于点E,连接PE,若AB:AP=3:4,请帮小明算出△DEQ的面积.
优质解答
证明(1)∵四边形ABCD正方形,
∴∠A=∠DCQ=∠ADC=90°,AD=CD,
∴∠ADP+∠PDC=90°,
∠CDQ+∠PDC=90°,
∴∠ADP=∠CDQ,
在△ADP和△CDQ中,
,
∴△ADP≌△CDQ,
∴AP=CQ;
(2)∵DE平分∠PDQ,
∴∠PDE=∠EDQ,
∵△ADP≌△CDQ,
∴DP=DQ,
在△PDE和△QDE中,
,
∴△PDE≌△QDE,
∴PE=EQ;
(3)∵AB:AP=3:4,AB=6,
∴AP=8,则BP=2,
由勾股定理得,DP=10,
由(2)可知,CQ=AP=8,DQ=DP=10,
∵BP∥DC,
∴△PBH∽△DCH,
∴==,
∴DH=,CH=,则HQ=,
∵DE是∠PDQ的平分线,
∴=,
∴=,
∴EQ=,
则△DEQ的面积=×6×=.
证明(1)∵四边形ABCD正方形,
∴∠A=∠DCQ=∠ADC=90°,AD=CD,
∴∠ADP+∠PDC=90°,
∠CDQ+∠PDC=90°,
∴∠ADP=∠CDQ,
在△ADP和△CDQ中,
,
∴△ADP≌△CDQ,
∴AP=CQ;
(2)∵DE平分∠PDQ,
∴∠PDE=∠EDQ,
∵△ADP≌△CDQ,
∴DP=DQ,
在△PDE和△QDE中,
,
∴△PDE≌△QDE,
∴PE=EQ;
(3)∵AB:AP=3:4,AB=6,
∴AP=8,则BP=2,
由勾股定理得,DP=10,
由(2)可知,CQ=AP=8,DQ=DP=10,
∵BP∥DC,
∴△PBH∽△DCH,
∴==,
∴DH=,CH=,则HQ=,
∵DE是∠PDQ的平分线,
∴=,
∴=,
∴EQ=,
则△DEQ的面积=×6×=.