数学
高中数学排列组合,概率问题甲乙两人做掷骰子(一种各面分别标有1,2,3,4,5,6个点的正方体玩具)游戏,每局两人同时各掷一个骰子,规定点数多为胜,点数相同为平局,胜得2分,平局得0分,负得-1分,设X为甲的总得分,求比赛两局X的分布列和期望

2019-05-23

高中数学排列组合,概率问题
甲乙两人做掷骰子(一种各面分别标有1,2,3,4,5,6个点的正方体玩具)游戏,每局两人同时各掷一个骰子,规定点数多为胜,点数相同为平局,胜得2分,平局得0分,负得-1分,设X为甲的总得分,求比赛两局X的分布列和期望
优质解答
P{甲<乙}= SUM_{K=2,3,...,6}P{乙=K,甲<K}
=SUM_{K=2,3,...,6}P{乙=K}P{甲<K}
=(1/6)SUM_{K=2,3,...,6}P{甲<K}
=(1/6)SUM_{K=2,3,...,6}[(K-1)/6]
= [1+2+...+5]/36 = 5*6/(2*6*6)=5/12.
P{甲=乙}=SUM_{K=1,2,...,6}P{乙=K,甲=K}
=SUM_{K=1,2,...,6}P{乙=K}P{甲=K}
=SUM_{K=1,2,...,6}(1/6)(1/6)
=6*1/6*1/6=1/6.
P{甲>乙}= 1 - P{甲<乙} - P{甲=乙}= 1-5/12-1/6=5/12.
P(X=-2)=P{第1局甲乙,第2局甲>乙}=[P{甲>乙}]^2 = [5/12]^2 = 25/144.
[验算:25/144+5/36+1/36+25/72+5/36+25/144=25/72+25/72+11/36 = 25/36 +11/36 = 1]
分布列:
P(X=-2)=25/144,
P(X=-1)=5/36,
P(X=0)=1/36,
P(X=1)=25/72,
P(X=2)=5/36,
P(X=4)=25/144.
期望=-2*(25/144) -1(5/36)+1(25/72)+2(5/36)+4(25/144)
=2(25/144)+5/36+25/72
=25/72+25/72 + 5/36
=25/36 + 5/36
=30/36
=5/6
P{甲<乙}= SUM_{K=2,3,...,6}P{乙=K,甲<K}
=SUM_{K=2,3,...,6}P{乙=K}P{甲<K}
=(1/6)SUM_{K=2,3,...,6}P{甲<K}
=(1/6)SUM_{K=2,3,...,6}[(K-1)/6]
= [1+2+...+5]/36 = 5*6/(2*6*6)=5/12.
P{甲=乙}=SUM_{K=1,2,...,6}P{乙=K,甲=K}
=SUM_{K=1,2,...,6}P{乙=K}P{甲=K}
=SUM_{K=1,2,...,6}(1/6)(1/6)
=6*1/6*1/6=1/6.
P{甲>乙}= 1 - P{甲<乙} - P{甲=乙}= 1-5/12-1/6=5/12.
P(X=-2)=P{第1局甲乙,第2局甲>乙}=[P{甲>乙}]^2 = [5/12]^2 = 25/144.
[验算:25/144+5/36+1/36+25/72+5/36+25/144=25/72+25/72+11/36 = 25/36 +11/36 = 1]
分布列:
P(X=-2)=25/144,
P(X=-1)=5/36,
P(X=0)=1/36,
P(X=1)=25/72,
P(X=2)=5/36,
P(X=4)=25/144.
期望=-2*(25/144) -1(5/36)+1(25/72)+2(5/36)+4(25/144)
=2(25/144)+5/36+25/72
=25/72+25/72 + 5/36
=25/36 + 5/36
=30/36
=5/6
相关问答