数学
一道考倒了无数高手的高一数学函数难题已知f(x)=a/(a2-1)【ax-a-x】,对于 f(x),当x属于(-1,1)时,有f(1-m)+f(1+m2)<0,

2019-05-22

一道考倒了无数高手的高一数学函数难题
已知f(x)=a/(a2-1)【ax-a-x】,对于 f(x),当x属于(-1,1)时,有f(1-m)+f(1+m2)<0,
优质解答
(1)0a/(a-2)<0
a^x在R上单调减
-a^(-x)在R上单调减
所以a^x-a^(-x)在R上单调减
f(x)=a/(a-2)*[a^x-a^(-x)]在R上单调增
(2)1a/(a-2)<0
a^x在R上单调增
-a^(-x)在R上单调增
所以a^x-a^(-x)在R上单调增
f(x)=a/(a-2)*[a^x-a^(-x)]在R上单调减
(3)a>2时
a/(a-2)>0
a^x在R上单调增
-a^(-x)在R上单调增
所以a^x-a^(-x)在R上单调增
f(x)=a/(a-2)*[a^x-a^(-x)]在R上单调增
综上,a的取值范围:a∈(0,1)∪(2,+∞)
导数就是函数的变化率,也是函数所表示的曲线的切线的斜率.
定义式:函数f(x)在x=x0处的导数是:
f'(x0)=lim{[f(x0+Δx)-f(x0)]/Δx}
取的是Δx→0时的极限
(1)0a/(a-2)<0
a^x在R上单调减
-a^(-x)在R上单调减
所以a^x-a^(-x)在R上单调减
f(x)=a/(a-2)*[a^x-a^(-x)]在R上单调增
(2)1a/(a-2)<0
a^x在R上单调增
-a^(-x)在R上单调增
所以a^x-a^(-x)在R上单调增
f(x)=a/(a-2)*[a^x-a^(-x)]在R上单调减
(3)a>2时
a/(a-2)>0
a^x在R上单调增
-a^(-x)在R上单调增
所以a^x-a^(-x)在R上单调增
f(x)=a/(a-2)*[a^x-a^(-x)]在R上单调增
综上,a的取值范围:a∈(0,1)∪(2,+∞)
导数就是函数的变化率,也是函数所表示的曲线的切线的斜率.
定义式:函数f(x)在x=x0处的导数是:
f'(x0)=lim{[f(x0+Δx)-f(x0)]/Δx}
取的是Δx→0时的极限
相关问答