精选问答
费马大定理如何证明?

2019-06-26

费马大定理如何证明?
优质解答
证明:m,n属于非负整数,x,y,z是正整数.j 表示“奇数”,k=2^(m+1)j 表示“偶数”.
按奇数与偶数的加法形式讨论费马方程:
1)偶数+偶数:  k1^n+k2^n=k3^n
 2^n 2^m1n j1^n + 2^n 2^m2n j2^n = 2^n 2^m3n j3^n
 2^m1n j1^n + 2^m2n j2^n = 2^m3n j3^n
 等式两边同时除以 min (2^m1n,2^m2n ,2^m3n),又分七种情况:
  A)m1=m2=m3   得:j1^n + j2^n = j3^n,偶数=奇数,产生矛盾.
B)仅m1=m2   j1^n + j2^n = 2^(m3-m1)n j3^n ,
 令m4=m3-m1   若m42   若j3是j1^n与j2^n的公因数j1=j2=j3   则有j4^n+j5^n=2^(m4)n ——待证明   2^(m4)n不是j1^n与j2^n的公因数   j1^n/ 2^(m4)n+ j2^n /2^(m4)n= j3^n   若j1=j2   则有2j1^n/ 2^(m4)n= j3^n   奇数/偶数=奇数,产生矛盾,  j1不等于j2   奇数 /2^n ,为末尾为5的小数   若要 j1^n/ 2^(m4)n+ j2^n /2^(m4)n等于整数,j1^n/ 2^(m4)n与 j2^n /2^(m4)n的小数位数要相同   j1/ 2^(m4)与 j2 /2^(m4)的小数位数也要相同   通过计算观察,j1^n/ 2^(m4)n+ j2^n /2^(m4)n要等于整数只能等于奇数,  推出j3=奇数   j1^n/ 2^(m4)n+ j2^n /2^(m4)n=奇数   j1^n/2^n+ j2^n/2^n =奇数乘 2^(m4-1)n   奇数乘2^(m4-1)n不等于奇数,产生矛盾,  可见,m12,“费马大定理”在正整数范围内成立.
  同理:应由1)2)3)可证,n>2,“费马大定理”在整数范围内成立.
证明:m,n属于非负整数,x,y,z是正整数.j 表示“奇数”,k=2^(m+1)j 表示“偶数”.
按奇数与偶数的加法形式讨论费马方程:
1)偶数+偶数:  k1^n+k2^n=k3^n
 2^n 2^m1n j1^n + 2^n 2^m2n j2^n = 2^n 2^m3n j3^n
 2^m1n j1^n + 2^m2n j2^n = 2^m3n j3^n
 等式两边同时除以 min (2^m1n,2^m2n ,2^m3n),又分七种情况:
  A)m1=m2=m3   得:j1^n + j2^n = j3^n,偶数=奇数,产生矛盾.
B)仅m1=m2   j1^n + j2^n = 2^(m3-m1)n j3^n ,
 令m4=m3-m1   若m42   若j3是j1^n与j2^n的公因数j1=j2=j3   则有j4^n+j5^n=2^(m4)n ——待证明   2^(m4)n不是j1^n与j2^n的公因数   j1^n/ 2^(m4)n+ j2^n /2^(m4)n= j3^n   若j1=j2   则有2j1^n/ 2^(m4)n= j3^n   奇数/偶数=奇数,产生矛盾,  j1不等于j2   奇数 /2^n ,为末尾为5的小数   若要 j1^n/ 2^(m4)n+ j2^n /2^(m4)n等于整数,j1^n/ 2^(m4)n与 j2^n /2^(m4)n的小数位数要相同   j1/ 2^(m4)与 j2 /2^(m4)的小数位数也要相同   通过计算观察,j1^n/ 2^(m4)n+ j2^n /2^(m4)n要等于整数只能等于奇数,  推出j3=奇数   j1^n/ 2^(m4)n+ j2^n /2^(m4)n=奇数   j1^n/2^n+ j2^n/2^n =奇数乘 2^(m4-1)n   奇数乘2^(m4-1)n不等于奇数,产生矛盾,  可见,m12,“费马大定理”在正整数范围内成立.
  同理:应由1)2)3)可证,n>2,“费马大定理”在整数范围内成立.
相关标签: 定理 证明
相关问答