精选问答
高中数学请解答要详细一些 谢谢。不知道的不要乱答。已知函数f(x)=f’(1)e^(x-1)- f(0)x+1/2x^2,(1)求f(x)的解析式及单调区间。(2)若f(x)≥1/2x^2+ax+b,求(a+1)b的最大值。

2019-06-25

高中数学请解答要详细一些 谢谢。不知道的不要乱答。
已知函数f(x)=f’(1)e^(x-1)- f(0)x+1/2x^2,(1)求f(x)的解析式及单调区间。(2)若f(x)≥1/2x^2+ax+b,求(a+1)b的最大值。
优质解答
1)记f'(1)=m, f(0)=n
f(x)=me^(x-1)-nx+1/2x²
f(0)=m/e=n,
f'(x)=me^(x-1)-n+x, f'(1)=m-n+1=m, 得:n=1
故m=en=e
因此f(x)=e^x-x+1/2x²
f'(x)=e^x-1+x
f"(x)=e^x+1>0, 即f'(x)为增函数,而f'(0)=1-1+0=0,
所以x0为f(x)的单调增区间。
2)记g(x)=f(x)-(1/2x²+ax+b)=e^x-x-ax-b>=0恒成立
g'(x)=e^x-(1+a)
若a=0,
记t=1+a, 则有t-tlnt-b>=0, 得b
1)记f'(1)=m, f(0)=n
f(x)=me^(x-1)-nx+1/2x²
f(0)=m/e=n,
f'(x)=me^(x-1)-n+x, f'(1)=m-n+1=m, 得:n=1
故m=en=e
因此f(x)=e^x-x+1/2x²
f'(x)=e^x-1+x
f"(x)=e^x+1>0, 即f'(x)为增函数,而f'(0)=1-1+0=0,
所以x0为f(x)的单调增区间。
2)记g(x)=f(x)-(1/2x²+ax+b)=e^x-x-ax-b>=0恒成立
g'(x)=e^x-(1+a)
若a=0,
记t=1+a, 则有t-tlnt-b>=0, 得b
相关问答