高等数学重积分的应用 求由曲面z=x²+y²,z=根号下(2-x²-y²)所围成的立体的表面积求指教呀
2019-05-30
高等数学重积分的应用 求由曲面z=x²+y²,z=根号下(2-x²-y²)所围成的立体的表面积
求指教呀
优质解答
消去z,(x^2+y^2)^2=2-(x^2+y^2), (x^2+y^2)^2+(x^2+y^2)-2=0,
{(x^2+y^2)-1][(x^2+y^2)+2]=0, 后者大于零,则
x^2+y^2=1, 即为积分区域D.
S1=∫∫√[1+(z')^2+(z')^2]dxdy =∫∫√(1+4x^2+4y^2)dxdy
=∫dt∫√(1+4r^2)rdr = (π/4)∫√(1+4r^2)d(1+4r^2)
=(π/6)(5√5-1);
S2=∫∫√[1+(z')^2+(z')^2]dxdy
=∫∫√[1+x^2/(2-x^2-y^2)+y^2/(2-x^2-y^2)]dxdy
=√2∫∫[1/√(2-x^2-y^2)]dxdy
=√2∫dt∫1/√(2-r^2)rdr
= -π√2∫1/√(2-r^2)d(2-r^2)=(4-2√2)π.
所求 S = S1+S2 = (π/6)(5√5-1)+(4-2√2)π.
消去z,(x^2+y^2)^2=2-(x^2+y^2), (x^2+y^2)^2+(x^2+y^2)-2=0,
{(x^2+y^2)-1][(x^2+y^2)+2]=0, 后者大于零,则
x^2+y^2=1, 即为积分区域D.
S1=∫∫√[1+(z')^2+(z')^2]dxdy =∫∫√(1+4x^2+4y^2)dxdy
=∫dt∫√(1+4r^2)rdr = (π/4)∫√(1+4r^2)d(1+4r^2)
=(π/6)(5√5-1);
S2=∫∫√[1+(z')^2+(z')^2]dxdy
=∫∫√[1+x^2/(2-x^2-y^2)+y^2/(2-x^2-y^2)]dxdy
=√2∫∫[1/√(2-x^2-y^2)]dxdy
=√2∫dt∫1/√(2-r^2)rdr
= -π√2∫1/√(2-r^2)d(2-r^2)=(4-2√2)π.
所求 S = S1+S2 = (π/6)(5√5-1)+(4-2√2)π.