数学
一道关于圆锥曲线类的题目已知动点P(x,y)在椭圆x^2/25+y^2/16=1上,若点A坐标为(3,0),AM=1,且AM垂直于PM,(1)求PM最小值.(2)如果以点A为圆心,当圆与椭圆刚好相切时,它的半径是多少?(我自己想的),这个时候圆与椭圆是一个交点还是两个焦点啊?以及理由.)

2019-05-27

一道关于圆锥曲线类的题目
已知动点P(x,y)在椭圆x^2/25+y^2/16=1上,若点A坐标为(3,0),AM=1,且AM垂直于PM,
(1)求PM最小值.
(2)如果以点A为圆心,当圆与椭圆刚好相切时,它的半径是多少?(我自己想的),这个时候圆与椭圆是一个交点还是两个焦点啊?以及理由.)
优质解答
(1)连结AP
因为AM⊥PM
由勾股定理得AP^2=AM^2+PM^2=1+PM^2
从上式可以看出当AP最小时PM最小
而A正好为椭圆有、右焦点,所以AP最小为5-3=2
所以PM最小值为√3
(2)这里有两种情况,
一种是圆内切于椭圆
此时半径为2,即A到椭圆的最小距离
第二种是圆外切于椭圆
此时半径为8,即A到椭圆的最大距离
(切点都只有一个)
(1)连结AP
因为AM⊥PM
由勾股定理得AP^2=AM^2+PM^2=1+PM^2
从上式可以看出当AP最小时PM最小
而A正好为椭圆有、右焦点,所以AP最小为5-3=2
所以PM最小值为√3
(2)这里有两种情况,
一种是圆内切于椭圆
此时半径为2,即A到椭圆的最小距离
第二种是圆外切于椭圆
此时半径为8,即A到椭圆的最大距离
(切点都只有一个)
相关问答