优质解答
1.对于极限来说,就引用你说的:
举个例子,给定一个ε,去一个很小的δ,满足那些条件;再取一个较小的ε,由于上一个δ很小,这一个δ可以取的稍大一些,同样也可以满足那些条件.这样一来f(x)趋向于L了,但x却远离c了
最后一句不对,x并没有远离c,而是x的取值范围宽了,是这个范围内的所有x都满足,当然小范围的也满足,也就是说δ可以取的稍大一些都满足了,取小一点也就满足了
对于无限小的一个ε,只要存在δ,0</x-c/<δ时满足,那么对于所有0举个特例f(x)=3显然有limf(x)(x->c)=3
不管ε取多大,δ取任意正值都满足,当然δ取很小的时候也应该满足
2.取δ=1只是一个假设,用来做验证的,看δ=1满不满足,还需什么条件
在取δ=1以后,就是先假定0</x-3/<1时成立,然后进行推导发现,除了要满足0</x-3/<1以外,还必须满足0</x-3/<ε/7就可以做到/f(x)-L/<ε
即0</x-3/<min{1,ε/7}时就是δ=min{1,ε/7}时/f(x)-L/<ε必成立
像1里说的δ还可以取更小的值也都是对的
1.对于极限来说,就引用你说的:
举个例子,给定一个ε,去一个很小的δ,满足那些条件;再取一个较小的ε,由于上一个δ很小,这一个δ可以取的稍大一些,同样也可以满足那些条件.这样一来f(x)趋向于L了,但x却远离c了
最后一句不对,x并没有远离c,而是x的取值范围宽了,是这个范围内的所有x都满足,当然小范围的也满足,也就是说δ可以取的稍大一些都满足了,取小一点也就满足了
对于无限小的一个ε,只要存在δ,0</x-c/<δ时满足,那么对于所有0举个特例f(x)=3显然有limf(x)(x->c)=3
不管ε取多大,δ取任意正值都满足,当然δ取很小的时候也应该满足
2.取δ=1只是一个假设,用来做验证的,看δ=1满不满足,还需什么条件
在取δ=1以后,就是先假定0</x-3/<1时成立,然后进行推导发现,除了要满足0</x-3/<1以外,还必须满足0</x-3/<ε/7就可以做到/f(x)-L/<ε
即0</x-3/<min{1,ε/7}时就是δ=min{1,ε/7}时/f(x)-L/<ε必成立
像1里说的δ还可以取更小的值也都是对的