数学
求一元二次方程的通解公式及其推理

2019-04-13

求一元二次方程的通解公式及其推理
优质解答
  一般来说,一元二次方程的解法有:(注:以下 ^ 是平方的意思.)
一、直接开平方法.如:x^2-4=0
                   x^2=4
                         x=±2(因为x是4的平方根)
                      ∴x1=2,x2=-2
二、配方法.如:x^2-4x+3=0
             x^2-4x=-3
            配方,得(配一次项系数一半的平方)
          x^2-2*2*x+2^2=-3+2^2(方程两边同时加上2^2,原式的值不变)
               (x-2)^2=1【方程左边完全平方公式得到(x-2)^2】
                    x-2=±1
                      x=±1+2
                   ∴x1=1,x2=3
三、公式法.(公式法的公式是由配方法推导来的)

          -b±∫b^2-4ac(-b加减后面是 根号下b^2-4ac)
公式为:x=-------------------------------------------(用中
                            2a
文吧,2a分之-b±根号下b^2-4ac)

利用公式法首先要明确什么是a、b、c.
其实它们就是最标准的二元一次方程的形式:ax^2+bx+c=0
△=b2-4ac称为该方程的根的判别式.
当b2-4ac>0时,方程有两个不相等的实数根;
当b2-4ac=时,方程有两个相等的实数根;
当b2-4ac<0时,方程没有实数根.
有些时候,做到b2-4ac<0时,需要讨论△,因为根号下的数字是非负数,<0也就没有实数根,也就没有做的意义了.
a代表二次项的系数,b代表着一次项系数,c是常数项
注意:用公式法解一元二次方程时首先要化成一般形式,也就是ax^2+bx+c=0的形式,然后才能做.
解题时按照上面的公式,把数字带入计算就OK了.这对任何一元二次方程都可以操作.
  一般来说,一元二次方程的解法有:(注:以下 ^ 是平方的意思.)
一、直接开平方法.如:x^2-4=0
                   x^2=4
                         x=±2(因为x是4的平方根)
                      ∴x1=2,x2=-2
二、配方法.如:x^2-4x+3=0
             x^2-4x=-3
            配方,得(配一次项系数一半的平方)
          x^2-2*2*x+2^2=-3+2^2(方程两边同时加上2^2,原式的值不变)
               (x-2)^2=1【方程左边完全平方公式得到(x-2)^2】
                    x-2=±1
                      x=±1+2
                   ∴x1=1,x2=3
三、公式法.(公式法的公式是由配方法推导来的)

          -b±∫b^2-4ac(-b加减后面是 根号下b^2-4ac)
公式为:x=-------------------------------------------(用中
                            2a
文吧,2a分之-b±根号下b^2-4ac)

利用公式法首先要明确什么是a、b、c.
其实它们就是最标准的二元一次方程的形式:ax^2+bx+c=0
△=b2-4ac称为该方程的根的判别式.
当b2-4ac>0时,方程有两个不相等的实数根;
当b2-4ac=时,方程有两个相等的实数根;
当b2-4ac<0时,方程没有实数根.
有些时候,做到b2-4ac<0时,需要讨论△,因为根号下的数字是非负数,<0也就没有实数根,也就没有做的意义了.
a代表二次项的系数,b代表着一次项系数,c是常数项
注意:用公式法解一元二次方程时首先要化成一般形式,也就是ax^2+bx+c=0的形式,然后才能做.
解题时按照上面的公式,把数字带入计算就OK了.这对任何一元二次方程都可以操作.
相关问答