2019-04-29
3n |
2 |
5 |
2 |
3n |
2 |
1 |
2 |
3
| ||
2 |
n2 |
2 |
n |
2 |
3 |
2 |
n−1 |
2 |
n−1 |
2 |
3(n−1) |
2 |
a3−a1=(a2−a1)+(a3−a2)=2+31=5 同理a5−a3=2+32=11所以(a3-a1)+(a5-a3)=16,…(2分) 从而,有a5-a1=16,所以,a5=17; …(3分) (Ⅱ)由题设知,a2n+1−a2n−1=3n+2,…(4分) 所以,a2n−1−a2n−3=3n−1+2a2n−3−a2n−5=3n−2+2 …a5−a3=32+2a3−a1=31+2…(6分) 将上述各式两边分别取和,得:a2n−1−a1=(31+32+…+3n−1)+2(n−1), 所以a2n−1=
(Ⅲ)由(Ⅱ),可得a2n=
1°当n为偶数时,Sn=(a1+a2)+(a3+a4)+…(an-1+an)=
2°当n为奇数时,若n=1,则S1=a1=1. 若n≥3,则Sn=(a1+a2)+(a3+a4)+…(an-2+an-1)+an =(31+32+…+3
|