高数同济大学第六版例题limx趋于0(tanx-x)/x^2sinx
2019-05-30
高数同济大学第六版例题limx趋于0(tanx-x)/x^2sinx
优质解答
原式=lim(x→0)(tanx-x)/x^3 (等价无穷小)
=lim(x→0)(1/cos^2(x)-1)/(3x^2) (洛必达法则)
=lim(x→0)sin^2(x)/(3x^3)*1/cos^2(x)
=1/3 (等价无穷小)
lim(x->0)(tanx-x)/(x^2sinx)=lim(x->0)(sinx-xcosx)/((1/2)x^2sin2x)
=lim(x->0)(sinx-xcosx)'/((1/2)x^2sin2x)'
=lim(x->0)(cosx-cosx+xsinx)/(xsin2x+x^2cos2x)
=lim(x->0)(xsinx)/(xsin2x+x^2cos2x)
=lim(x->0)(1/(2cosx+(x/sinx)cos2x))
=1/3
原式=lim(x→0)(tanx-x)/x^3 (等价无穷小)
=lim(x→0)(1/cos^2(x)-1)/(3x^2) (洛必达法则)
=lim(x→0)sin^2(x)/(3x^3)*1/cos^2(x)
=1/3 (等价无穷小)
lim(x->0)(tanx-x)/(x^2sinx)=lim(x->0)(sinx-xcosx)/((1/2)x^2sin2x)
=lim(x->0)(sinx-xcosx)'/((1/2)x^2sin2x)'
=lim(x->0)(cosx-cosx+xsinx)/(xsin2x+x^2cos2x)
=lim(x->0)(xsinx)/(xsin2x+x^2cos2x)
=lim(x->0)(1/(2cosx+(x/sinx)cos2x))
=1/3