不定积分问题要解题步骤∫(sinx^2)/(cosx^3)dx
2019-05-28
不定积分问题要解题步骤
∫(sinx^2)/(cosx^3)dx
优质解答
∫(sinx^2)/(cosx^3)dx=∫(sinx^2)/(cosx^4) *cosxdx
∫(sinx^2)/(cosx^4)dsinx
设sinx=t
∫t^2/(1-t^2)^2 dt
分项 t^2/(1-t^2)^2 =0.25(-1/(1-t) +1/(1-t)^2-1/(1+t)+1/(1+t)^2)
0.25∫(-1/(1-t) +1/(1-t)^2-1/(1+t)+1/(1+t)^2)dt
=0.25(in(1-t)+1/(1-t)-in(1+t)-1/(1+t))+C
sinx=t 带回
0.25(in(1-sinx)+1/(1-sinx)-in(i+sinx)-1/(1+sinx))+c
∫(sinx^2)/(cosx^3)dx=∫(sinx^2)/(cosx^4) *cosxdx
∫(sinx^2)/(cosx^4)dsinx
设sinx=t
∫t^2/(1-t^2)^2 dt
分项 t^2/(1-t^2)^2 =0.25(-1/(1-t) +1/(1-t)^2-1/(1+t)+1/(1+t)^2)
0.25∫(-1/(1-t) +1/(1-t)^2-1/(1+t)+1/(1+t)^2)dt
=0.25(in(1-t)+1/(1-t)-in(1+t)-1/(1+t))+C
sinx=t 带回
0.25(in(1-sinx)+1/(1-sinx)-in(i+sinx)-1/(1+sinx))+c