精选问答
(2010•淄博一模)如图,在五面体ABCDEF中,FA⊥平面ABCD,AD∥BC∥FE,AB⊥AD,M为EC中点,AF=AB=BC=FE=12AD(I)求证:BF⊥DM(Ⅱ)求二面角A-CD-E的余弦值.

2019-04-29

(2010•淄博一模)如图,在五面体ABCDEF中,FA⊥平面ABCD,AD∥BC∥FE,AB⊥AD,M为EC中点,AF=AB=BC=FE=
1
2
AD
(I)求证:BF⊥DM
(Ⅱ)求二面角A-CD-E的余弦值.
优质解答
(I)证明:设P为AD的中点,连接EP,PC,
所以由已知,EF
.
.
AP
.
.
BC
∴EP=PC,FA∥EP,EC∥BF,AB∥PC…(2分)
又∵FA⊥平面ABCD,
∴EP⊥平面ABCD
因为PC、AD⊂平面ABCD
所以EP⊥PC,EP⊥AD
设FA=a,则EP=PC=PD=a,
ED=CD=
2
a
…(5分)
∵M为EC的中点,
∴DM⊥CE
∵BF∥EC
∴DM⊥BF.…(6分)
(II)取CD的中点Q,连接PQ,EQ
由(I)知PC=PD,CE=DE
∴PQ⊥CD,EQ⊥CD
∴∠EQP为二面角A-CD-E的平面角…(10分)
由(I)可得,在等边△ECD中EQ=
6
2
a

在等腰Rt△CPD中,PQ=
2
2
a

Rt△EPQ中,cos∠EQP=
PQ
EQ
3
3

故二面角A-CD-E的余弦值为
3
3
.…(12分)
(I)证明:设P为AD的中点,连接EP,PC,
所以由已知,EF
.
.
AP
.
.
BC
∴EP=PC,FA∥EP,EC∥BF,AB∥PC…(2分)
又∵FA⊥平面ABCD,
∴EP⊥平面ABCD
因为PC、AD⊂平面ABCD
所以EP⊥PC,EP⊥AD
设FA=a,则EP=PC=PD=a,
ED=CD=
2
a
…(5分)
∵M为EC的中点,
∴DM⊥CE
∵BF∥EC
∴DM⊥BF.…(6分)
(II)取CD的中点Q,连接PQ,EQ
由(I)知PC=PD,CE=DE
∴PQ⊥CD,EQ⊥CD
∴∠EQP为二面角A-CD-E的平面角…(10分)
由(I)可得,在等边△ECD中EQ=
6
2
a

在等腰Rt△CPD中,PQ=
2
2
a

Rt△EPQ中,cos∠EQP=
PQ
EQ
3
3

故二面角A-CD-E的余弦值为
3
3
.…(12分)
相关问答