数学
七年级教材在图形与几何部分给出了五条基本事实,在《证明》一章中我们从两条基本事实出发,把前面得到的平行线相关性质进行了严格的证明,体会了数学的公理化化思想.请完成下列证明活动:活动1.利用基本事实证明:“两直线平行,同位角相等”.(在括号内填上相应的基本事实)已知:如图1,直线AB、CD被直线EF所截,AB∥CD.求证:∠1=∠2.证明:假设∠1≠∠2,则可以过点O作∠EOG=∠2.∵∠EOG=∠2,∴OG∥CD().∴过O点存在两条直线AB、OG两条直线与CD平行,这与基本事实()矛盾.∴假设不成立.∴

2019-04-15

七年级教材在图形与几何部分给出了五条基本事实,在《证明》一章中我们从两条基本事实出发,把前面得到的平行线相关性质进行了严格的证明,体会了数学的公理化化思想.请完成下列证明活动:
活动1.利用基本事实证明:“两直线平行,同位角相等”.(在括号内填上相应的基本事实)已知:如图1,直线AB、CD被直线EF所截,AB∥CD.
作业帮
求证:∠1=∠2.
证明:假设∠1≠∠2,则可以过点O作∠EOG=∠2.
∵∠EOG=∠2,
∴OG∥CD(___).
∴过O点存在两条直线AB、OG两条直线与CD平行,这与基本事实(___)矛盾.
∴假设不成立.
∴∠1=∠2.
活动2.利用刚刚证明的“两直线平行,同位角相等”证明“两直线平行,同旁内角互补”.(要求画图,写出已知、求证并写出证明过程)
已知:___.
求证:___.
证明:
优质解答
作业帮 活动1,证明:假设∠1≠∠2,则可以过点O作∠EOG=∠2.
∵∠EOG=∠2,
∴OG∥CD(同位角相等,两直线平行).
∴过O点存在两条直线AB、OG两条直线与CD平行,这与基本事实(AB∥CD)矛盾.
∴假设不成立.
∴∠1=∠2.
故答案为:同位角相等,两直线平行,AB∥CD;
活动2,已知:AB∥CD,
求证:两直线平行,同旁内角互补.
证明:如图,∵AB∥CD,
∴∠1=∠2.
∵∠1+∠3=180°,
∴∠2+∠3=180°,即两直线平行,同旁内角互补.
故答案为:AB∥CD,两直线平行,同旁内角互补,
作业帮 活动1,证明:假设∠1≠∠2,则可以过点O作∠EOG=∠2.
∵∠EOG=∠2,
∴OG∥CD(同位角相等,两直线平行).
∴过O点存在两条直线AB、OG两条直线与CD平行,这与基本事实(AB∥CD)矛盾.
∴假设不成立.
∴∠1=∠2.
故答案为:同位角相等,两直线平行,AB∥CD;
活动2,已知:AB∥CD,
求证:两直线平行,同旁内角互补.
证明:如图,∵AB∥CD,
∴∠1=∠2.
∵∠1+∠3=180°,
∴∠2+∠3=180°,即两直线平行,同旁内角互补.
故答案为:AB∥CD,两直线平行,同旁内角互补,
相关问答