精选问答
初二的因式分解练习题要60道因式分解练习题!!!不要填空的!!!还要答案!!!

2019-06-20

初二的因式分解练习题要60道因式分解练习题!!!不要填空的!!!还要答案!!!
优质解答
1.a^4-4a+3 2.(a+x)^m+1*(b+x)^n-1-(a+x)^m*(b+x)^n 3.x^2+(a+1/a)xy+y^2 4.9a^2-4b^2+4bc-c^2 5.(c-a)^2-4(b-c)(a-b) 答案1.原式=a^4-a-3a+3=(a-1)(a^3+a^2+a-3) 2.[1-(a+x)^m][(b+x)^n-1] 3.(ax+y)(1/ax+y) 4.9a^2-4b^2+4bc-c^2=(3a)^2-(4b^2-4bc+c^2)=(3a)^2-(2b-c)^2=(3a+2b-c)(3a-2b+c) 5.(c-a)^2-4(b-c)(a-b) =(c-a)(c-a)-4(ab-b^2-ac+bc) =c^2-2ac+a^2-4ab+4b^2+4ac-4bc =c^2+a^2+4b^2-4ab+2ac-4bc =(a-2b)^2+c^2-(2c)(a-2b) =(a-2b-c)^2 1.x^2+2x-8 2.x^2+3x-10 3.x^2-x-20 4.x^2+x-6 5.2x^2+5x-3 6.6x^2+4x-2 7.x^2-2x-3 8.x^2+6x+8 9.x^2-x-12 10.x^2-7x+10 11.6x^2+x+2 12.4x^2+4x-3 解方程:(x的平方+5x-6)分之一=(x的平方+x+6)分之一 十字相乘法虽然比较难学,但是一旦学会了它,用它来解题,会给我们带来很多方便,以下是我对十字相乘法提出的一些个人见解。 1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。 2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。 3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。 4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。2、十字相乘法只适用于二次三项式类型的题目。3、十字相乘法比较难学。 5、十字相乘法解题实例: 1)、用十字相乘法解一些简单常见的题目 例1把m²+4m-12分解因式 分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题 因为1-2 1╳6 所以m²+4m-12=(m-2)(m+6) 例2把5x²+6x-8分解因式 分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1。当二次项系数分为1×5,常数项分为-4×2时,才符合本题 因为12 5╳-4 所以5x²+6x-8=(x+2)(5x-4) 例3解方程x²-8x+15=0 分析:把x²-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。 因为1-3 1╳-5 所以原方程可变形(x-3)(x-5)=0 所以x1=3x2=5 例4、解方程6x²-5x-25=0 分析:把6x²-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。 因为2-5 3╳5 所以原方程可变形成(2x-5)(3x+5)=0 所以x1=5/2x2=-5/3 2)、用十字相乘法解一些比较难的题目 例5把14x²-67xy+18y²分解因式 分析:把14x²-67xy+18y²看成是一个关于x的二次三项式,则14可分为1×14,2×7,18y²可分为y.18y,2y.9y,3y.6y 解:因为2-9y 7╳-2y 所以14x²-67xy+18y²=(2x-9y)(7x-2y) 例6把10x²-27xy-28y²-x+25y-3分解因式 分析:在本题中,要把这个多项式整理成二次三项式的形式 解法一、10x²-27xy-28y²-x+25y-3 =10x²-(27y+1)x-(28y²-25y+3)4y-3 7y╳-1 =10x²-(27y+1)x-(4y-3)(7y-1) =[2x-(7y-1)][5x+(4y-3)]2-(7y–1) 5╳4y-3 =(2x-7y+1)(5x+4y-3) 说明:在本题中先把28y²-25y+3用十字相乘法分解为(4y-3)(7y-1),再用十字相乘法把10x²-(27y+1)x-(4y-3)(7y-1)分解为[2x-(7y-1)][5x+(4y-3)] 解法二、10x²-27xy-28y²-x+25y-3 =(2x-7y)(5x+4y)-(x-25y)-32-7y =[(2x-7y)+1][(5x-4y)-3]5╳4y =(2x-7y+1)(5x-4y-3)2x-7y1 5x-4y╳-3 说明:在本题中先把10x²-27xy-28y²用十字相乘法分解为(2x-7y)(5x+4y),再把(2x-7y)(5x+4y)-(x-25y)-3用十字相乘法分解为[(2x-7y)+1][(5x-4y)-3]. 例7:解关于x方程:x²-3ax+2a²–ab-b²=0 分析:2a²–ab-b²可以用十字相乘法进行因式分解 x²-3ax+2a²–ab-b²=0 x²-3ax+(2a²–ab-b²)=0 x²-3ax+(2a+b)(a-b)=01-b 2╳+b [x-(2a+b)][x-(a-b)]=01-(2a+b) 1╳-(a-b) 所以x1=2a+bx2=a-b 5-7(a+1)-6(a+1)^2 =-[6(a+1)^2+7(a+1)-5] =-[2(a+1)-1][3(a+1)+5] =-(2a+1)(3a+8); -4x^3+6x^2-2x =-2x(2x^2-3x+1) =-2x(x-1)(2x-1); 6(y-z)^2+13(z-y)+6 =6(z-y)^2+13(z-y)+6 =[2(z-y)+3][3(z-y)+2] =(2z-2y+3)(3z-3y+2). 比如...x^2+6x-7这个式子 由于一次幂x前系数为6 所以,我们可以想到,7-1=6 那正好这个式子的常数项为-7 因此我们想到将-7看成7*(-1) 于是我们作十字相成 x+7 x-1 的到(x+7)·(x-1) 成功分解了因式 3ab^2-9a^2b^2+6a^3b^2 =3ab^2(1-3a+2a^2) =3ab^2(2a^2-3a+1) =3ab^2(2a-1)(a-1) 5-7(a+1)-6(a+1)^2 =-[6(a+1)^2+7(a+1)-5] =-[2(a+1)-1][3(a+1)+5] =-(2a+1)(3a+8); -4x^3+6x^2-2x =-2x(2x^2-3x+1) =-2x(x-1)(2x-1); 6(y-z)^2+13(z-y)+6 =6(z-y)^2+13(z-y)+6 =[2(z-y)+3][3(z-y)+2] =(2z-2y+3)(3z-3y+2). 比如...x^2+6x-7这个式子 由于一次幂x前系数为6 所以,我们可以想到,7-1=6 那正好这个式子的常数项为-7 因此我们想到将-7看成7*(-1) 于是我们作十字相成 x+7 x-1 的到(x+7)·(x-1) 成功分解了因式 3ab^2-9a^2b^2+6a^3b^2 =3ab^2(1-3a+2a^2) =3ab^2(2a^2-3a+1) =3ab^2(2a-1)(a-1) x^2+3x-40 =x^2+3x+2.25-42.25 =(x+1.5)^2-(6.5)^2 =(x+8)(x-5). ⑹十字相乘法 这种方法有两种情况。 ①x^2+(p+q)x+pq型的式子的因式分解 这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和。因此,可以直接将某些二次项的系数是1的二次三项式因式分x^2+(p+q)x+pq=(x+p)(x+q). ②kx^2+mx+n型的式子的因式分解 如果如果有k=ac,n=bd,且有ad+bc=m时,那么kx^2+mx+n=(ax+b)(cx+d). 图示如下: ab × cd 例如:因为 1-3 × 72 -3×7=-21,1×2=2,且2-21=-19, 所以7x^2-19x-6=(7x+2)(x-3). 十字相乘法口诀:首尾分解,交叉相乘,求和凑中 ⑶分组分解法 分组分解是解方程的一种简洁的方法,我们来学习这个知识。 能分组分解的方程有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法。 比如: ax+ay+bx+by =a(x+y)+b(x+y) =(a+b)(x+y) 我们把ax和ay分一组,bx和by分一组,利用乘法分配律,两两相配,立即解除了困难。 同样,这道题也可以这样做。 ax+ay+bx+by =x(a+b)+y(a+b) =(a+b)(x+y) 几道例题: 1.5ax+5bx+3ay+3by 解法:=5x(a+b)+3y(a+b) =(5x+3y)(a+b) 说明:系数不一样一样可以做分组分解,和上面一样,把5ax和5bx看成整体,把3ay和3by看成一个整体,利用乘法分配律轻松解出。 2.x3-x2+x-1 解法:=(x3-x2)+(x-1) =x2(x-1)+(x-1) =(x-1)(x2+1) 利用二二分法,提公因式法提出x2,然后相合轻松解决。 3.x2-x-y2-y 解法:=(x2-y2)-(x+y) =(x+y)(x-y)-(x+y) =(x+y)(x-y+1) 利用二二分法,再利用公式法a2-b2=(a+b)(a-b),然后相合解决。 758²—258²=(758+258)(758-258)=1016*500=508000 1.a^4-4a+3 2.(a+x)^m+1*(b+x)^n-1-(a+x)^m*(b+x)^n 3.x^2+(a+1/a)xy+y^2 4.9a^2-4b^2+4bc-c^2 5.(c-a)^2-4(b-c)(a-b) 答案1.原式=a^4-a-3a+3=(a-1)(a^3+a^2+a-3) 2.[1-(a+x)^m][(b+x)^n-1] 3.(ax+y)(1/ax+y) 4.9a^2-4b^2+4bc-c^2=(3a)^2-(4b^2-4bc+c^2)=(3a)^2-(2b-c)^2=(3a+2b-c)(3a-2b+c) 5.(c-a)^2-4(b-c)(a-b) =(c-a)(c-a)-4(ab-b^2-ac+bc) =c^2-2ac+a^2-4ab+4b^2+4ac-4bc =c^2+a^2+4b^2-4ab+2ac-4bc =(a-2b)^2+c^2-(2c)(a-2b) =(a-2b-c)^2 1.x^2+2x-8 2.x^2+3x-10 3.x^2-x-20 4.x^2+x-6 5.2x^2+5x-3 6.6x^2+4x-2 7.x^2-2x-3 8.x^2+6x+8 9.x^2-x-12 10.x^2-7x+10 11.6x^2+x+2 12.4x^2+4x-3 解方程:(x的平方+5x-6)分之一=(x的平方+x+6)分之一 十字相乘法虽然比较难学,但是一旦学会了它,用它来解题,会给我们带来很多方便,以下是我对十字相乘法提出的一些个人见解。 1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。 2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。 3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。 4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。2、十字相乘法只适用于二次三项式类型的题目。3、十字相乘法比较难学。 5、十字相乘法解题实例: 1)、用十字相乘法解一些简单常见的题目 例1把m²+4m-12分解因式 分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题 因为1-2 1╳6 所以m²+4m-12=(m-2)(m+6) 例2把5x²+6x-8分解因式 分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1。当二次项系数分为1×5,常数项分为-4×2时,才符合本题 因为12 5╳-4 所以5x²+6x-8=(x+2)(5x-4) 例3解方程x²-8x+15=0 分析:把x²-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。 因为1-3 1╳-5 所以原方程可变形(x-3)(x-5)=0 所以x1=3x2=5 例4、解方程6x²-5x-25=0 分析:把6x²-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。 因为2-5 3╳5 所以原方程可变形成(2x-5)(3x+5)=0 所以x1=5/2x2=-5/3 2)、用十字相乘法解一些比较难的题目 例5把14x²-67xy+18y²分解因式 分析:把14x²-67xy+18y²看成是一个关于x的二次三项式,则14可分为1×14,2×7,18y²可分为y.18y,2y.9y,3y.6y 解:因为2-9y 7╳-2y 所以14x²-67xy+18y²=(2x-9y)(7x-2y) 例6把10x²-27xy-28y²-x+25y-3分解因式 分析:在本题中,要把这个多项式整理成二次三项式的形式 解法一、10x²-27xy-28y²-x+25y-3 =10x²-(27y+1)x-(28y²-25y+3)4y-3 7y╳-1 =10x²-(27y+1)x-(4y-3)(7y-1) =[2x-(7y-1)][5x+(4y-3)]2-(7y–1) 5╳4y-3 =(2x-7y+1)(5x+4y-3) 说明:在本题中先把28y²-25y+3用十字相乘法分解为(4y-3)(7y-1),再用十字相乘法把10x²-(27y+1)x-(4y-3)(7y-1)分解为[2x-(7y-1)][5x+(4y-3)] 解法二、10x²-27xy-28y²-x+25y-3 =(2x-7y)(5x+4y)-(x-25y)-32-7y =[(2x-7y)+1][(5x-4y)-3]5╳4y =(2x-7y+1)(5x-4y-3)2x-7y1 5x-4y╳-3 说明:在本题中先把10x²-27xy-28y²用十字相乘法分解为(2x-7y)(5x+4y),再把(2x-7y)(5x+4y)-(x-25y)-3用十字相乘法分解为[(2x-7y)+1][(5x-4y)-3]. 例7:解关于x方程:x²-3ax+2a²–ab-b²=0 分析:2a²–ab-b²可以用十字相乘法进行因式分解 x²-3ax+2a²–ab-b²=0 x²-3ax+(2a²–ab-b²)=0 x²-3ax+(2a+b)(a-b)=01-b 2╳+b [x-(2a+b)][x-(a-b)]=01-(2a+b) 1╳-(a-b) 所以x1=2a+bx2=a-b 5-7(a+1)-6(a+1)^2 =-[6(a+1)^2+7(a+1)-5] =-[2(a+1)-1][3(a+1)+5] =-(2a+1)(3a+8); -4x^3+6x^2-2x =-2x(2x^2-3x+1) =-2x(x-1)(2x-1); 6(y-z)^2+13(z-y)+6 =6(z-y)^2+13(z-y)+6 =[2(z-y)+3][3(z-y)+2] =(2z-2y+3)(3z-3y+2). 比如...x^2+6x-7这个式子 由于一次幂x前系数为6 所以,我们可以想到,7-1=6 那正好这个式子的常数项为-7 因此我们想到将-7看成7*(-1) 于是我们作十字相成 x+7 x-1 的到(x+7)·(x-1) 成功分解了因式 3ab^2-9a^2b^2+6a^3b^2 =3ab^2(1-3a+2a^2) =3ab^2(2a^2-3a+1) =3ab^2(2a-1)(a-1) 5-7(a+1)-6(a+1)^2 =-[6(a+1)^2+7(a+1)-5] =-[2(a+1)-1][3(a+1)+5] =-(2a+1)(3a+8); -4x^3+6x^2-2x =-2x(2x^2-3x+1) =-2x(x-1)(2x-1); 6(y-z)^2+13(z-y)+6 =6(z-y)^2+13(z-y)+6 =[2(z-y)+3][3(z-y)+2] =(2z-2y+3)(3z-3y+2). 比如...x^2+6x-7这个式子 由于一次幂x前系数为6 所以,我们可以想到,7-1=6 那正好这个式子的常数项为-7 因此我们想到将-7看成7*(-1) 于是我们作十字相成 x+7 x-1 的到(x+7)·(x-1) 成功分解了因式 3ab^2-9a^2b^2+6a^3b^2 =3ab^2(1-3a+2a^2) =3ab^2(2a^2-3a+1) =3ab^2(2a-1)(a-1) x^2+3x-40 =x^2+3x+2.25-42.25 =(x+1.5)^2-(6.5)^2 =(x+8)(x-5). ⑹十字相乘法 这种方法有两种情况。 ①x^2+(p+q)x+pq型的式子的因式分解 这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和。因此,可以直接将某些二次项的系数是1的二次三项式因式分x^2+(p+q)x+pq=(x+p)(x+q). ②kx^2+mx+n型的式子的因式分解 如果如果有k=ac,n=bd,且有ad+bc=m时,那么kx^2+mx+n=(ax+b)(cx+d). 图示如下: ab × cd 例如:因为 1-3 × 72 -3×7=-21,1×2=2,且2-21=-19, 所以7x^2-19x-6=(7x+2)(x-3). 十字相乘法口诀:首尾分解,交叉相乘,求和凑中 ⑶分组分解法 分组分解是解方程的一种简洁的方法,我们来学习这个知识。 能分组分解的方程有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法。 比如: ax+ay+bx+by =a(x+y)+b(x+y) =(a+b)(x+y) 我们把ax和ay分一组,bx和by分一组,利用乘法分配律,两两相配,立即解除了困难。 同样,这道题也可以这样做。 ax+ay+bx+by =x(a+b)+y(a+b) =(a+b)(x+y) 几道例题: 1.5ax+5bx+3ay+3by 解法:=5x(a+b)+3y(a+b) =(5x+3y)(a+b) 说明:系数不一样一样可以做分组分解,和上面一样,把5ax和5bx看成整体,把3ay和3by看成一个整体,利用乘法分配律轻松解出。 2.x3-x2+x-1 解法:=(x3-x2)+(x-1) =x2(x-1)+(x-1) =(x-1)(x2+1) 利用二二分法,提公因式法提出x2,然后相合轻松解决。 3.x2-x-y2-y 解法:=(x2-y2)-(x+y) =(x+y)(x-y)-(x+y) =(x+y)(x-y+1) 利用二二分法,再利用公式法a2-b2=(a+b)(a-b),然后相合解决。 758²—258²=(758+258)(758-258)=1016*500=508000
相关问答