数学
口袋中有a个白球,b个黑球和n个红球,现从中一个一个不返回地取球,问白球比黑球出现的早的概率是多少?不要什么归纳法!讲明理由,思路!正确答案肯定是要有数学归纳法证明出的!并且还要有简单,明了的思路!这才能成为最佳答案!所谓最佳答案,当然是要给后来人看的了!其它巧妙回答也对,但是数学归纳法是最有力的说明!

2019-05-30

口袋中有a个白球,b个黑球和n个红球,现从中一个一个不返回地取球,问白球比黑球出现的早的概率是多少?
不要什么归纳法!
讲明理由,思路!
正确答案肯定是要有数学归纳法证明出的!并且还要有简单,明了的思路!这才能成为最佳答案!
所谓最佳答案,当然是要给后来人看的了!
其它巧妙回答也对,但是数学归纳法是最有力的说明!
优质解答
在只有黑球和白球的时候
白球比黑球先出现的概率是a/(a+b)
即第一个球就是白球
在有n个红球的时候 无论什么时候摸到红球都不影响结果
可以把这些球看成两部分
1 红球n个
2 白加黑a+b个
若是摸到1部分 红球 不影响结果
若是摸到2部分
则有a/(a+b)的概率白球比黑球先出现
b/(a+b)的概率黑球比白球先出现
现从中一个一个不返回地取球 摸到第二部分的概率是1
所以白球比黑球先出现的概率是a/(a+b)
另外用数学归纳法也可以证明此结论
设概率为Pn
n=1时
分两种情况:
1 先取到红球 则剩下a个白球b个黑球 则白球比黑球先出现概率为
(1/(a+b+1))*(a/(a+b))
2 先取到白球 则概率为 a/(a+b+1)
总概率为(1/(a+b+1))*(a/(a+b))+a/(a+b+1)=a/(a+b)
即P1=a/(a+b)
假设n=k时
概率为 Pk=a/(a+b)
则:
n=k+1时
分两种情况
1、先取到红球 剩下k个红球和a个白球b个黑球 和n=k情况相同 则白球比黑球先出现概率为 ((k+1)/(a+b+k+1)))*Pk
2、 先取到白球 概率为(a/(a+b+k+1))
概率为((k+1)/(a+b+k+1)))*Pk+(a/(a+b+k+1))
=((k+1)/(a+b+k+1))*(a/(a+b))+(a/(a+b+k+1)))
=a/(a+b)
即p(k+1)=a/(a+b)
成立
故对一切n
Pn=a/(a+b)成立
即白球比黑球先出现的概率为a/(a+b)
在只有黑球和白球的时候
白球比黑球先出现的概率是a/(a+b)
即第一个球就是白球
在有n个红球的时候 无论什么时候摸到红球都不影响结果
可以把这些球看成两部分
1 红球n个
2 白加黑a+b个
若是摸到1部分 红球 不影响结果
若是摸到2部分
则有a/(a+b)的概率白球比黑球先出现
b/(a+b)的概率黑球比白球先出现
现从中一个一个不返回地取球 摸到第二部分的概率是1
所以白球比黑球先出现的概率是a/(a+b)
另外用数学归纳法也可以证明此结论
设概率为Pn
n=1时
分两种情况:
1 先取到红球 则剩下a个白球b个黑球 则白球比黑球先出现概率为
(1/(a+b+1))*(a/(a+b))
2 先取到白球 则概率为 a/(a+b+1)
总概率为(1/(a+b+1))*(a/(a+b))+a/(a+b+1)=a/(a+b)
即P1=a/(a+b)
假设n=k时
概率为 Pk=a/(a+b)
则:
n=k+1时
分两种情况
1、先取到红球 剩下k个红球和a个白球b个黑球 和n=k情况相同 则白球比黑球先出现概率为 ((k+1)/(a+b+k+1)))*Pk
2、 先取到白球 概率为(a/(a+b+k+1))
概率为((k+1)/(a+b+k+1)))*Pk+(a/(a+b+k+1))
=((k+1)/(a+b+k+1))*(a/(a+b))+(a/(a+b+k+1)))
=a/(a+b)
即p(k+1)=a/(a+b)
成立
故对一切n
Pn=a/(a+b)成立
即白球比黑球先出现的概率为a/(a+b)
相关问答