离散数学谓词逻辑问题:(p->∃xq(x)) -> ∃x(p->q) 请证明该式为重言式
2019-05-29
离散数学谓词逻辑问题:(p->∃xq(x)) -> ∃x(p->q) 请证明该式为重言式
优质解答
证明:
∵(p→∃xq(x))→∃x(p→q).
= ¬(¬p∨∃xq(x))∨∃x(¬p∨q).
= (p∧Vx¬q(x) )∨ ¬p ∨ q.
= ((p∨¬p) ∧ (Vx¬q(x)∨¬p) )∨q.
= (1∧ (Vx¬q(x)∨¬p) )∨q.
= (Vx¬q(x)∨¬p) ∨q.
= Vx( ¬p ∨q ∨ ¬q(x) ) .
= Vx( ¬p ∨1 ) .
= 1.
∴该式为重言式.
证明:
∵(p→∃xq(x))→∃x(p→q).
= ¬(¬p∨∃xq(x))∨∃x(¬p∨q).
= (p∧Vx¬q(x) )∨ ¬p ∨ q.
= ((p∨¬p) ∧ (Vx¬q(x)∨¬p) )∨q.
= (1∧ (Vx¬q(x)∨¬p) )∨q.
= (Vx¬q(x)∨¬p) ∨q.
= Vx( ¬p ∨q ∨ ¬q(x) ) .
= Vx( ¬p ∨1 ) .
= 1.
∴该式为重言式.