2019-05-07
阅读材料: 例:说明代数式 x2+1 + (x-3)2+4 的几何意义,并求它的最小值. 解: x2+1 + (x-3)2+4 =" (x-0)2+12" + (x-3)2+22 ,如图,建立平面直角坐标系,点P(x,0)是x轴上一点,则 (x-0)2+12 可以看成点P与点A(0,1)的距离, (x-3)2+22 可以看成点P与点B(3,2)的距离,所以原代数式的值可以看成线段PA与PB长度之和,它的最小值就是PA+PB的最小值. 设点A关于x轴的对称点为A′,则PA=PA′,因此,求PA+PB的最小值,只需求PA′+PB的最小值,而点A′、B间的直线段距离最短,所以PA′+PB的最小值为线段A′B的长度.为此,构造直角三角形A′CB,因为A′C=3,CB=3,所以A′B="3" 2 ,即原式的最小值为3 2 . 根据以上阅读材料,解答下列问题: (1)代数式 (x-1)2+1 + (x-2)2+9 的值可以看成平面直角坐标系中点P(x,0)与点A(1,1)、点B (2,3)的距离之和.(填写点B的坐标) (2)代数式 x2+49 + x2-12x+37 的最小值为. |
(1)(2,3)(2)10 |
(1)∵原式化为 的形式, ∴代数式 的值可以看成平面直角坐标系中点P(x,0)与点A(1,1)、点B(2,3)的距离之和, 故答案为(2,3); (2)∵原式化为 的形式, ∴所求代数式的值可以看成平面直角坐标系中点P(x,0)与点A(0,7)、点B(6,1)的距离之和, 如图所示:设点A关于x轴的对称点为A′,则PA=PA′, ∴PA+PB的最小值,只需求PA′+PB的最小值,而点A′、B间的直线段距离最短, ∴PA′+PB的最小值为线段A′B的长度, ∵A(0,7),B(6,1) ∴A′(0,-7),A′C=6,BC=8, ∴A′B , 1)先把原式化为 的形式,再根据题中所给的例子即可得出结论; (2)先把原式化为 的形式,故得出所求代数式的值可以看成平面直角坐标系中点P(x,0)与点A(0,7)、点B(6,1)的距离之和,再根据在坐标系内描出各点,利用勾股定理得出结论即可. |
(1)(2,3)(2)10 |
(1)∵原式化为 的形式, ∴代数式 的值可以看成平面直角坐标系中点P(x,0)与点A(1,1)、点B(2,3)的距离之和, 故答案为(2,3); (2)∵原式化为 的形式, ∴所求代数式的值可以看成平面直角坐标系中点P(x,0)与点A(0,7)、点B(6,1)的距离之和, 如图所示:设点A关于x轴的对称点为A′,则PA=PA′, ∴PA+PB的最小值,只需求PA′+PB的最小值,而点A′、B间的直线段距离最短, ∴PA′+PB的最小值为线段A′B的长度, ∵A(0,7),B(6,1) ∴A′(0,-7),A′C=6,BC=8, ∴A′B , 1)先把原式化为 的形式,再根据题中所给的例子即可得出结论; (2)先把原式化为 的形式,故得出所求代数式的值可以看成平面直角坐标系中点P(x,0)与点A(0,7)、点B(6,1)的距离之和,再根据在坐标系内描出各点,利用勾股定理得出结论即可. |