物理
如图所示的真空管中,质量为m,电量为e的电子从灯丝F发出,经过电压U1加速后沿中心线射入相距为d的两平行金属板B、C间的匀强电场中,通过电场后打到荧光屏上,设B、C间电压为U2,B、C板长为l1,平行金属板右端到荧光屏的距离为l2,求:(1)电子打到荧光屏上的位置偏离屏中心距离Y?(B、C间电压为U2时电子能偏出极板).(2)若U1=100v,U2=100v,d=2cm l1,=4cm l2=10cm,电子打到荧光屏上的位置偏离屏中心距离Y0?

2019-06-26

如图所示的真空管中,质量为m,电量为e的电子从灯丝F发出,经过电压U1加速后沿中心线射入相距为d的两平行金属板B、C间的匀强电场中,通过电场后打到荧光屏上,设B、C间电压为U2,B、C板长为l1,平行金属板右端到荧光屏的距离为l2,求:
(1)电子打到荧光屏上的位置偏离屏中心距离Y?(B、C间电压为U2时电子能偏出极板).
(2)若U1=100v,U2=100v,d=2cm l1,=4cm l2=10cm,电子打到荧光屏上的位置偏离屏中心距离Y0
优质解答
(1)设电子经电压U1加速后的速度为v0,由动能定理得:
eU1=
1
2
mv02
设电子在偏转电场中运动的时间为t1,电子的加速度为α,离开偏转电场时的侧移量为y1
电子以速度υ0进入偏转电场后,垂直于电场方向做匀速直线运动,则有:l1=v0t1
沿电场方向做初速度为零的匀加速直线运动,由牛顿第二定律得:F=eE2=e
U2
d
=ma,
解得:a=
eU2
md

则得:y1=
1
2
a
t
2
1

联立以上四式解得:y1=
U2
l
2
1
4U1d

设电子离开偏转电场时沿电场方向的速度为υy,由匀变速运动的速度公式可知υy=at1
电子离开偏转电场后做匀速直线运动,设电子离开偏转电场后打在荧光屏上所用的时间为t2
电子打到荧光屏上的侧移量为y2,如图所示,
水平方向:l2=v0t2
竖直方向:y2=vyt2
解得:y2=
U2l1l2
2dU1

电子打到荧光屏上的位置偏离屏中心距离:Y=y1+y2=
(2l2+l1)U2l1
4U1d

(2)将U1=100v,U2=100v,d=2cm l1=4cm l2=10cm,代入上式得:
Y0=
(2×10+4)×100×4
4×100×2
cm=12cm
答:(1)电子打到荧光屏上的位置偏离屏中心距离Y是
(2l2+l1)U2l1
4U1d

(2)若U1=100v,U2=100v,d=2cm l1=4cm l2=10cm,电子打到荧光屏上的位置偏离屏中心距离Y0是12cm.
(1)设电子经电压U1加速后的速度为v0,由动能定理得:
eU1=
1
2
mv02
设电子在偏转电场中运动的时间为t1,电子的加速度为α,离开偏转电场时的侧移量为y1
电子以速度υ0进入偏转电场后,垂直于电场方向做匀速直线运动,则有:l1=v0t1
沿电场方向做初速度为零的匀加速直线运动,由牛顿第二定律得:F=eE2=e
U2
d
=ma,
解得:a=
eU2
md

则得:y1=
1
2
a
t
2
1

联立以上四式解得:y1=
U2
l
2
1
4U1d

设电子离开偏转电场时沿电场方向的速度为υy,由匀变速运动的速度公式可知υy=at1
电子离开偏转电场后做匀速直线运动,设电子离开偏转电场后打在荧光屏上所用的时间为t2
电子打到荧光屏上的侧移量为y2,如图所示,
水平方向:l2=v0t2
竖直方向:y2=vyt2
解得:y2=
U2l1l2
2dU1

电子打到荧光屏上的位置偏离屏中心距离:Y=y1+y2=
(2l2+l1)U2l1
4U1d

(2)将U1=100v,U2=100v,d=2cm l1=4cm l2=10cm,代入上式得:
Y0=
(2×10+4)×100×4
4×100×2
cm=12cm
答:(1)电子打到荧光屏上的位置偏离屏中心距离Y是
(2l2+l1)U2l1
4U1d

(2)若U1=100v,U2=100v,d=2cm l1=4cm l2=10cm,电子打到荧光屏上的位置偏离屏中心距离Y0是12cm.
相关问答