数学
求初三12分的关于圆和二次函数的压轴题快,一定要快 明天要用 附带答案 O(∩∩)O谢谢
2019-06-02
下载本文
求初三12分的关于圆和二次函数的压轴题
快,一定要快 明天要用 附带答案 O(∩_∩)O谢谢
优质解答
(点击图片看图)
如图, 二次函数 y = ax2 + bx + c 的 图 象与 x 轴 交于点A(6,0)和点B(2,0),与y轴交于点C(0, );⊙P经过A、B、C三点.
(1)求二次函数的表达式;
(2)求圆心P的坐标;
(3)二次函数在第一象限内的图象上是否存在点Q,使得以P、Q、A、B四点为顶点的四边形是平行四边形?若存在,请求出点Q的坐标并证明所说的四边形是平行四边形;若不存在,请说明理由.
1
将A(6,0)和点B(2,0)代入方程 y = ax2 + bx + c
得,a*6^2+b*6+c=0
a*2^2+b*2+c=0
且-b/(2*a)=(6+2)/2
b=-8a;c=12a
2
由于点A(6,0)和点B(2,0)
可设p(4,m)
则有.(4-2)^2+m^2=4^2+(m-12a)^2
m=(12a^2+1)/2a
3
若存在,因为PQ=AB=4,且抛物线关于x=4对称.
则抛物线过点(0,m)或(8,m),在第一象限内为Q(8,m)
将Q(8,m);b=-8a;c=12a代入方程 y = ax2 + bx + c 得
m=12a;即(12a^2+1)/2a=12a
故得,a=√3 /6;m=2√3
所以,当a的值为√3/6时,存在Q(8,2√3)使得,P、Q、A、B四点可以组成平行四边形.
(点击图片看图)
如图, 二次函数 y = ax2 + bx + c 的 图 象与 x 轴 交于点A(6,0)和点B(2,0),与y轴交于点C(0, );⊙P经过A、B、C三点.
(1)求二次函数的表达式;
(2)求圆心P的坐标;
(3)二次函数在第一象限内的图象上是否存在点Q,使得以P、Q、A、B四点为顶点的四边形是平行四边形?若存在,请求出点Q的坐标并证明所说的四边形是平行四边形;若不存在,请说明理由.
1
将A(6,0)和点B(2,0)代入方程 y = ax2 + bx + c
得,a*6^2+b*6+c=0
a*2^2+b*2+c=0
且-b/(2*a)=(6+2)/2
b=-8a;c=12a
2
由于点A(6,0)和点B(2,0)
可设p(4,m)
则有.(4-2)^2+m^2=4^2+(m-12a)^2
m=(12a^2+1)/2a
3
若存在,因为PQ=AB=4,且抛物线关于x=4对称.
则抛物线过点(0,m)或(8,m),在第一象限内为Q(8,m)
将Q(8,m);b=-8a;c=12a代入方程 y = ax2 + bx + c 得
m=12a;即(12a^2+1)/2a=12a
故得,a=√3 /6;m=2√3
所以,当a的值为√3/6时,存在Q(8,2√3)使得,P、Q、A、B四点可以组成平行四边形.
相关问答
谁有一次函数和二次函数的题目含答案十分哦!
二次函数典型例题解析二次函数Y=ax2+b
我想要二次函数的详细的知识点 然后加上习题
二次函数典型例题
求一道二次函数题答案已知(一开口向上的抛物
二次函数的经典例题越多越好,越精越好
初三二次函数的题型与解题技巧
跪求25道二次函数题,越简单越好!一定要简
九年级数学的二次函数复习和练习例题
求初中二次函数复习的例题祥解和练习题
初三二次函数复习题
二次函数练习计算题:通过配方将下列函数写成
关于二次函数的习题.
10道二次函数题(带答案)填空,
初三二次函数的一般式 顶点式 交点式 练习
二次函数实际应用习题 加详解