数学题目在数列{an}中,a₁=0,且对任何k∈N*.a2k-1,a2k,a2k+1成等差数列,其公差为dk.1.若dk=2k,证明a2k,a2k+1,a2k+2成等比数列(k∈N*)2.若对任意k∈N*,a2k,a2k+1,a2k+2成等比数列,其公比为qk.
2019-05-30
数学题目
在数列{an}中,a₁=0,且对任何k∈N*.a2k-1,a2k,a2k+1成等差数列,
其公差为dk.
1.若dk=2k,证明a2k,a2k+1,a2k+2成等比数列(k∈N*)
2.若对任意k∈N*,a2k,a2k+1,a2k+2成等比数列,其公比为qk.
优质解答
1、由a2k-1,a2k,a2k+1成等差数列,公差为dk=2k,所以a(2k+1)=a(2k-1)+4k.
k分别取1,2,3,…,k累加得a(2k+1)=a1+4(1+2+3+…+k)=2k(k+1).
从而a(2k)=a(2k+1)-2k=2k(k+1)-2k=2k²,a(2k+2)=2(k+1)²
a(2k)a(2k+2)=2k²×2(k+1)²=4[k(k+1)]²=[a(2k+1)]².
所以a2k,a2k+1,a2k+2成等比数列.
第二题是求什么呢
1、由a2k-1,a2k,a2k+1成等差数列,公差为dk=2k,所以a(2k+1)=a(2k-1)+4k.
k分别取1,2,3,…,k累加得a(2k+1)=a1+4(1+2+3+…+k)=2k(k+1).
从而a(2k)=a(2k+1)-2k=2k(k+1)-2k=2k²,a(2k+2)=2(k+1)²
a(2k)a(2k+2)=2k²×2(k+1)²=4[k(k+1)]²=[a(2k+1)]².
所以a2k,a2k+1,a2k+2成等比数列.
第二题是求什么呢