数学
一道数学概率题,求NB人士一个答题比赛,你有5次答题机会,每次机会可以选择答30分的题(答对概率为1/3)或20分的题(答对概率1/2),答够90分即可获胜(例如,连续三次都选30分的题且都答对了则终止比赛)求:如何选择答题顺序能使获胜的概率最大.

2019-04-13

一道数学概率题,求NB人士
一个答题比赛,你有5次答题机会,每次机会可以选择答30分的题(答对概率为1/3)或20分的题(答对概率1/2),答够90分即可获胜(例如,连续三次都选30分的题且都答对了则终止比赛)求:如何选择答题顺序能使获胜的概率最大.
优质解答
设n,m分别为五次答题中30分题与20分题的数目,有:m+n=5
当n与m确定时,题目的顺序对获胜的概率没有影响,即不考虑答题顺序.
当n=2,m=3时获胜的概率最大.
在(n,m)确定下,可以先假设一种答题顺序(前n道为30分题,后m道为20分题),然后求解大于90分的概率.
求解结果如下:
(0,5)---获胜概率1/(2^5)=1/(2^5)
(1,4)---获胜概率1/(3*2^4)+1/(3*2^4)=2/(3*2^4)
(2,3)---获胜概率1/(3^2*2^3)+2/(3^2*2^3)+1/(3^2*2^3)=4/(3^2*2^3)
(3,2)---获胜概率1/(3^3*2^2)+2/(3^3*2^2)+1/(3^3*2^2)+1/(3^3*2^2)=5/(3^3*2^2)
(4,1)---获胜概率1/(3^4*2^1)+2/(3^4*2^1)+2/(3^4*2^1)+1/(3^4*2^1)=6/(3^4*2)
(5,0)---获胜概率1/(3*5)+2/(3*5)+4/(3*5)=7/(3^5)
可见当n=2,m=3时,获胜概率最大.
答对的话记得采纳偶为满意答案就行.
设n,m分别为五次答题中30分题与20分题的数目,有:m+n=5
当n与m确定时,题目的顺序对获胜的概率没有影响,即不考虑答题顺序.
当n=2,m=3时获胜的概率最大.
在(n,m)确定下,可以先假设一种答题顺序(前n道为30分题,后m道为20分题),然后求解大于90分的概率.
求解结果如下:
(0,5)---获胜概率1/(2^5)=1/(2^5)
(1,4)---获胜概率1/(3*2^4)+1/(3*2^4)=2/(3*2^4)
(2,3)---获胜概率1/(3^2*2^3)+2/(3^2*2^3)+1/(3^2*2^3)=4/(3^2*2^3)
(3,2)---获胜概率1/(3^3*2^2)+2/(3^3*2^2)+1/(3^3*2^2)+1/(3^3*2^2)=5/(3^3*2^2)
(4,1)---获胜概率1/(3^4*2^1)+2/(3^4*2^1)+2/(3^4*2^1)+1/(3^4*2^1)=6/(3^4*2)
(5,0)---获胜概率1/(3*5)+2/(3*5)+4/(3*5)=7/(3^5)
可见当n=2,m=3时,获胜概率最大.
答对的话记得采纳偶为满意答案就行.
相关问答