介绍函数不动点关于不动点 理论 原理 应用(只要数列就可以了)
2019-05-30
介绍函数不动点
关于不动点 理论 原理 应用(只要数列就可以了)
优质解答
函数的不动点,在数学中是指被这个函数映射到其自身一个点
不动点原理
不动点原理是数学上一个重要的原理,也叫压缩映像原理或Banach不动点定理,完整的表达:完备的度量空间上,到自身的一个压缩映射存在唯一的不动点.用初等数学可以这么理连续映射f的定义域包含值域,则存在一个x使得f(x)=x 不动点的概念可以推广到一般的拓扑空间上.假设X是拓扑空间,f:X→X是一个连续映射,且存在x∈X,使得f(x)=x,就称x是不动点
不动点应用
1 利用f(x)的不动点解方程(牛顿切线法)
2 利用f(x)的不动点求函数或多项式的解析式
3 利用f(x)的不动点讨论n-周期点问题
4 求解数列问题(求解一阶递归数列的通项公式)
5 求解一阶递归数列的极限
函数的不动点,在数学中是指被这个函数映射到其自身一个点
不动点原理
不动点原理是数学上一个重要的原理,也叫压缩映像原理或Banach不动点定理,完整的表达:完备的度量空间上,到自身的一个压缩映射存在唯一的不动点.用初等数学可以这么理连续映射f的定义域包含值域,则存在一个x使得f(x)=x 不动点的概念可以推广到一般的拓扑空间上.假设X是拓扑空间,f:X→X是一个连续映射,且存在x∈X,使得f(x)=x,就称x是不动点
不动点应用
1 利用f(x)的不动点解方程(牛顿切线法)
2 利用f(x)的不动点求函数或多项式的解析式
3 利用f(x)的不动点讨论n-周期点问题
4 求解数列问题(求解一阶递归数列的通项公式)
5 求解一阶递归数列的极限