数学
f(z)=e的z次方在z=0处解析吗?复变函数问题

2019-05-23

f(z)=e的z次方在z=0处解析吗?复变函数问题
优质解答
设z=x+iy
f(z)=e^z=e^(x+iy)=e^x·e^(iy)=e^xcosy+ie^xsiny
所以u=e^xcosy,v=e^xsiny
du/dx=e^xcosy
du/dy=-e^xsiny
dv/dx=e^xsiny
dv/dy=e^xcosy
由du/dx=dv/dy得e^xcosy=e^xcosy,可知该方程对于x,y∈R都成立
由du/dy=-dv/dx得-e^xsiny=-e^xsiny,可知该方程对于x,y∈R都成立
即对于z∈C,f(z)=e^z都满足柯西黎曼条件
所以f(z)=e^z在C上处处可导,故在C上处处解析
特别地,f(z)=e^z在z=0处解析.
希望能够帮助你,有疑问欢迎追问,祝学习进步!
设z=x+iy
f(z)=e^z=e^(x+iy)=e^x·e^(iy)=e^xcosy+ie^xsiny
所以u=e^xcosy,v=e^xsiny
du/dx=e^xcosy
du/dy=-e^xsiny
dv/dx=e^xsiny
dv/dy=e^xcosy
由du/dx=dv/dy得e^xcosy=e^xcosy,可知该方程对于x,y∈R都成立
由du/dy=-dv/dx得-e^xsiny=-e^xsiny,可知该方程对于x,y∈R都成立
即对于z∈C,f(z)=e^z都满足柯西黎曼条件
所以f(z)=e^z在C上处处可导,故在C上处处解析
特别地,f(z)=e^z在z=0处解析.
希望能够帮助你,有疑问欢迎追问,祝学习进步!
相关问答