数学
一元二次方程1、直接开平方法;2、配方法;3、公式法;4、因式分解法.

2019-05-28

一元二次方程1、直接开平方法;2、配方法;3、公式法;4、因式分解法.
优质解答
1、直接开平方法:直接开平方法就是用直接开平方求解一元二次方程的方法.用直接开平方法解形如(x-m)²=n (n≥0)的 方程,其解为x=±√n+m .
例:解方程(3x+1)²=7
∵(3x+1)²=7
∴3x+1=±√7
∴x= ﹙﹣1±√7﹚/3
∴原方程的解为x1=﹙√7﹣1﹚/3,x2=﹙﹣√7-1﹚/3
2、配方法:用配方法解方程ax²+bx+c=0 (a≠0) .先将常数c移到方程右边:ax²+bx=-c ,将二次项系数化为:x²+bx/a=- c/a ,方程两边分别加上一次项系数的一半的平方:x²+bx/a+( b/2a)²=- c/a+( b/2a)²,方程左边成为一个完全平方式:(x+b/2a)²= -c/a﹢﹙b/2a﹚² .当b²-4ac≥0时,x+b/2a =±√﹙﹣c/a﹚﹢﹙b/2a﹚² ,所以x=﹛﹣b±[√﹙b²﹣4ac﹚]﹜/2a(这就是求根公式)
例:用配方法解方程 3x²-4x-2=0
将常数项移到方程右边 3x²-4x=2
将二次项系数化为:x²-﹙4/3﹚x= 2/3
方程两边都加上一次项系数一半的平方:x²-﹙4/3﹚x+( 4/6)²=2/3 +(4/6 )²
配方:(x-4/6)²= 2/3 +(4/6 )²
直接开平方得:x-4/6=± √[2/3+(4/6 )² ]
∴x= 4/6± √[2/3 +(4/6 )² ]
原方程的解为x1=4/6﹢√﹙10/9﹚,x2=4/6﹣√﹙10/9﹚
3、公式法:把一元二次方程化成一般形式,然后计算判别式△=b²-4ac的值,当b²-4ac≥0时,把各项系数a,b,c的值代入求根公式x=[-b±√(b²-4ac)]/(2a) ,(b²-4ac≥0)就可得到方程的根.
例:用公式法解方程 2x²+4x+1=0
∴a=2,b=4 ,c=1
⊿=b²-4ac=16-4*2*1=8>0
x=(-b±√⊿)/(2a)=(-4±2√2)/4=(-2±√2)/4
∴原方程的解为x1=(-2+√2)/4 x2==(-2-√2)/4
4、因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根.这种解一元二次方程的方法叫做因式分解法.
例:用因式分解法解方程:6x²+5x-50=0
6x²+5x-50=0
(2x-5)(3x+10)=0
∴2x-5=0或3x+10=0
∴原方程的解x1=5/2,x2=-10/3
小结:
一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数.
直接开平方法是最基本的方法.
公式法和配方法是最重要的方法.
公式法适用于任何一元二次方程(有人称之为万能法),在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程是否有解.
配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法解一元二次方程.但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方法(换元法,配方法,待定系数法)之一,一定要掌握好.
1、直接开平方法:直接开平方法就是用直接开平方求解一元二次方程的方法.用直接开平方法解形如(x-m)²=n (n≥0)的 方程,其解为x=±√n+m .
例:解方程(3x+1)²=7
∵(3x+1)²=7
∴3x+1=±√7
∴x= ﹙﹣1±√7﹚/3
∴原方程的解为x1=﹙√7﹣1﹚/3,x2=﹙﹣√7-1﹚/3
2、配方法:用配方法解方程ax²+bx+c=0 (a≠0) .先将常数c移到方程右边:ax²+bx=-c ,将二次项系数化为:x²+bx/a=- c/a ,方程两边分别加上一次项系数的一半的平方:x²+bx/a+( b/2a)²=- c/a+( b/2a)²,方程左边成为一个完全平方式:(x+b/2a)²= -c/a﹢﹙b/2a﹚² .当b²-4ac≥0时,x+b/2a =±√﹙﹣c/a﹚﹢﹙b/2a﹚² ,所以x=﹛﹣b±[√﹙b²﹣4ac﹚]﹜/2a(这就是求根公式)
例:用配方法解方程 3x²-4x-2=0
将常数项移到方程右边 3x²-4x=2
将二次项系数化为:x²-﹙4/3﹚x= 2/3
方程两边都加上一次项系数一半的平方:x²-﹙4/3﹚x+( 4/6)²=2/3 +(4/6 )²
配方:(x-4/6)²= 2/3 +(4/6 )²
直接开平方得:x-4/6=± √[2/3+(4/6 )² ]
∴x= 4/6± √[2/3 +(4/6 )² ]
原方程的解为x1=4/6﹢√﹙10/9﹚,x2=4/6﹣√﹙10/9﹚
3、公式法:把一元二次方程化成一般形式,然后计算判别式△=b²-4ac的值,当b²-4ac≥0时,把各项系数a,b,c的值代入求根公式x=[-b±√(b²-4ac)]/(2a) ,(b²-4ac≥0)就可得到方程的根.
例:用公式法解方程 2x²+4x+1=0
∴a=2,b=4 ,c=1
⊿=b²-4ac=16-4*2*1=8>0
x=(-b±√⊿)/(2a)=(-4±2√2)/4=(-2±√2)/4
∴原方程的解为x1=(-2+√2)/4 x2==(-2-√2)/4
4、因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根.这种解一元二次方程的方法叫做因式分解法.
例:用因式分解法解方程:6x²+5x-50=0
6x²+5x-50=0
(2x-5)(3x+10)=0
∴2x-5=0或3x+10=0
∴原方程的解x1=5/2,x2=-10/3
小结:
一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数.
直接开平方法是最基本的方法.
公式法和配方法是最重要的方法.
公式法适用于任何一元二次方程(有人称之为万能法),在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程是否有解.
配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法解一元二次方程.但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方法(换元法,配方法,待定系数法)之一,一定要掌握好.
相关问答