数学
如图,点E是矩形ABCD中CD边上一点,△BCE沿BE折叠为△BFE,点F落在AD上. (1)求证:△ABF∽△DFE;(2)若△BEF也与△ABF相似,请求出BCCD的值.

2019-04-10

如图,点E是矩形ABCD中CD边上一点,△BCE沿BE折叠为△BFE,点F落在AD上.

(1)求证:△ABF∽△DFE;
(2)若△BEF也与△ABF相似,请求出
BC
CD
的值.
优质解答
(1)证明:在矩形ABCD中,∠A=∠C=∠D=90°,
又由折叠的性质知△BCE≌△BFE,
∴∠BFE=∠C=90°,
∵∠2+∠3=∠1+∠3=90°,
∴∠2=∠1,
∴△ABF∽△DFE;
(2)①当△ABF∽△FBE时,∠2=∠4.
∵∠4=∠5,∠2+∠4+∠5=90°,
∴∠2=∠4=∠5=30°,
∴设CE=EF=x,则BC=
3
x
,DE=
1
2
x

∴DC=
3
2
x

BC
CD
=
3
x
3x
2
=
2
3
3

②当△ABF∽△FEB时,∠2=∠6,
∵∠4+∠6=90°,
∴∠2+∠4=90°,
这与∠2+∠4+∠5=90°相矛盾,
∴△ABF∽△FEB不成立.
综上所述,
BC
CD
的值是
2
3
3
(1)证明:在矩形ABCD中,∠A=∠C=∠D=90°,
又由折叠的性质知△BCE≌△BFE,
∴∠BFE=∠C=90°,
∵∠2+∠3=∠1+∠3=90°,
∴∠2=∠1,
∴△ABF∽△DFE;
(2)①当△ABF∽△FBE时,∠2=∠4.
∵∠4=∠5,∠2+∠4+∠5=90°,
∴∠2=∠4=∠5=30°,
∴设CE=EF=x,则BC=
3
x
,DE=
1
2
x

∴DC=
3
2
x

BC
CD
=
3
x
3x
2
=
2
3
3

②当△ABF∽△FEB时,∠2=∠6,
∵∠4+∠6=90°,
∴∠2+∠4=90°,
这与∠2+∠4+∠5=90°相矛盾,
∴△ABF∽△FEB不成立.
综上所述,
BC
CD
的值是
2
3
3
相关问答