数学
高数题:lim(n→∞)(1+2∧n+3∧n+4∧n)∧ 1/n=?

2019-04-14

高数题:lim(n→∞)(1+2∧n+3∧n+4∧n)∧ 1/n=?
优质解答
记y=(1+2∧n+3∧n+4∧n)∧ 1/n
lny=1/n ln(1+2∧n+3∧n+4∧n)
=1/n* {nln4+ln[1/4^n+(2/4)^n+(3/4)^n+1]}
=ln4+1/n *ln[1/4^n+(2/4)^n+(3/4)^n+1]
n->无穷时,lny=ln4
得:y=4
原式=4
记y=(1+2∧n+3∧n+4∧n)∧ 1/n
lny=1/n ln(1+2∧n+3∧n+4∧n)
=1/n* {nln4+ln[1/4^n+(2/4)^n+(3/4)^n+1]}
=ln4+1/n *ln[1/4^n+(2/4)^n+(3/4)^n+1]
n->无穷时,lny=ln4
得:y=4
原式=4
相关问答