数学
关于初中数学的N多概念定义啊这个是要背的啦……先这么多吧:平方根、近似数和有效数字的概念、实数的加减乘除运算法则二次根式的概念及加减乘除运算法则、有关实数的简单四则运算用字母表示数的意义、整数指数幂的意义及基本性质、整式分式的概念、整式加减运算、乘法运算准则PS:能答几个就答几个吧……好的我会加分的.

2019-05-27

关于初中数学的N多概念定义
啊这个是要背的啦……
先这么多吧:
平方根、近似数和有效数字的概念、实数的加减乘除运算法则
二次根式的概念及加减乘除运算法则、有关实数的简单四则运算
用字母表示数的意义、整数指数幂的意义及基本性质、整式分式的概念、
整式加减运算、乘法运算准则
PS:能答几个就答几个吧……好的我会加分的.
优质解答
平方根,又叫二次方根,对于非负实数来说,是指某个自乘结果等于的实数,表示为(√),其中属于非负实数的平方根称算术平方根.
一个数与准确数相近(比准确数略多或者略少些),这一个数称之为近似数
有效数字是指在分析工作中实际能够测量到的数字
整式的加减
代数式.代数式的值.整式.
单项式.多项式.合并同类项.
去括号与添括号.数与整式相乘.整式的加减法.
具体要求:
(1)掌握用字母表示有理数,了解用字母表示数是数学的一
大进步.
(2)了解代数式、代数式的值的概念,会列出代数式表示简单的数量关系,会求代数式的值.
(3)了解整式、单项式及其系数与次数、多项式次数、项与项数的概念,会把一个多项式接某个字母降幂排列或升幂排列.
(4)掌握合并同类项的方法,去括号、添括号的法则,熟练掌握数与整式相乘的运算以及整式的加减运算.
(5)通过用字母表示数、列代数式和求代数式的值、整式的加减,了解抽象概括的思维方法和特殊与一般的辩证关系.
整式的乘除
l·整式的乘法
同底数幂的乘法.单项式的乘法.幂的乘方.积的乘方.单项式与多项式相乘.多项式的乘法.乘法公式:
(a十b)(a一b)=a2-b2
(a±b)2=a2±2ab+b2
(a±b)(a2±ab+ b2)=a3±b3
具体要求:
(1)掌握正整数幂的运算性质(同底数幂的乘法,幂的乘方,积的乘方),会用它们熟练地进行运算.
(2)掌握单项式与单项式、单项式与多项式、多项式与多项式相乘的法则,会用它们进行运算.
(3)灵活运用五个乘法公式进行运算(直接用公式不超过三次).
(4)通过从幂运算到多项式的乘法,再到乘法公式的教学,初步理解“特殊———一般——一特殊”的认识规律.
2·整式的除法
同底数幂的除法.单项式除以单项式.多项式除以单项式.
具体要求:
(1)掌握同底数幂的除法运算性质,会用它熟练地进行运算.
(2)掌握单项式除以单项式、多项式除以单项式的法则,会用它们进行运算.
(3)会进行整式的加、减、乘、除、乘方的较简单的混合运算,灵活运用运算律与乘法公式使运算简便.
1.分式
分式.分式的基本性质.约分.最简分式.
分式的乘除法.分式的乘方.
同分母的分式加减法.通分.异分母的分式加减法.
具体要求:
(l)了解分式、有理式、最简分式、最简公分母的概念,掌握分式的基本性质,会熟练地进行约分和通分.
(2)掌握分式的加、减与乘、除、乘方的运算法则,会进行简单的分式运算.
2.零指数与负整数指数
零指数.负整数指数.整数指数幂的运算.
具体要求:
(l)了解零指数和负整数指数幂的意义;了解正整数指数幂的运算性质可以推广到整数指数幂,掌握整数指数幂的运算.
(2)会用科学记数法表示数.
平方根,又叫二次方根,对于非负实数来说,是指某个自乘结果等于的实数,表示为(√),其中属于非负实数的平方根称算术平方根.
一个数与准确数相近(比准确数略多或者略少些),这一个数称之为近似数
有效数字是指在分析工作中实际能够测量到的数字
整式的加减
代数式.代数式的值.整式.
单项式.多项式.合并同类项.
去括号与添括号.数与整式相乘.整式的加减法.
具体要求:
(1)掌握用字母表示有理数,了解用字母表示数是数学的一
大进步.
(2)了解代数式、代数式的值的概念,会列出代数式表示简单的数量关系,会求代数式的值.
(3)了解整式、单项式及其系数与次数、多项式次数、项与项数的概念,会把一个多项式接某个字母降幂排列或升幂排列.
(4)掌握合并同类项的方法,去括号、添括号的法则,熟练掌握数与整式相乘的运算以及整式的加减运算.
(5)通过用字母表示数、列代数式和求代数式的值、整式的加减,了解抽象概括的思维方法和特殊与一般的辩证关系.
整式的乘除
l·整式的乘法
同底数幂的乘法.单项式的乘法.幂的乘方.积的乘方.单项式与多项式相乘.多项式的乘法.乘法公式:
(a十b)(a一b)=a2-b2
(a±b)2=a2±2ab+b2
(a±b)(a2±ab+ b2)=a3±b3
具体要求:
(1)掌握正整数幂的运算性质(同底数幂的乘法,幂的乘方,积的乘方),会用它们熟练地进行运算.
(2)掌握单项式与单项式、单项式与多项式、多项式与多项式相乘的法则,会用它们进行运算.
(3)灵活运用五个乘法公式进行运算(直接用公式不超过三次).
(4)通过从幂运算到多项式的乘法,再到乘法公式的教学,初步理解“特殊———一般——一特殊”的认识规律.
2·整式的除法
同底数幂的除法.单项式除以单项式.多项式除以单项式.
具体要求:
(1)掌握同底数幂的除法运算性质,会用它熟练地进行运算.
(2)掌握单项式除以单项式、多项式除以单项式的法则,会用它们进行运算.
(3)会进行整式的加、减、乘、除、乘方的较简单的混合运算,灵活运用运算律与乘法公式使运算简便.
1.分式
分式.分式的基本性质.约分.最简分式.
分式的乘除法.分式的乘方.
同分母的分式加减法.通分.异分母的分式加减法.
具体要求:
(l)了解分式、有理式、最简分式、最简公分母的概念,掌握分式的基本性质,会熟练地进行约分和通分.
(2)掌握分式的加、减与乘、除、乘方的运算法则,会进行简单的分式运算.
2.零指数与负整数指数
零指数.负整数指数.整数指数幂的运算.
具体要求:
(l)了解零指数和负整数指数幂的意义;了解正整数指数幂的运算性质可以推广到整数指数幂,掌握整数指数幂的运算.
(2)会用科学记数法表示数.
相关问答