数学
(2014•淄博)如图,四边形ABCD中,AC⊥BD交BD于点E,点F,M分别是AB,BC的中点,BN平分∠ABE交AM于点N,AB=AC=BD.连接MF,NF.(1)判断△BMN的形状,并证明你的结论;(2)判断△MFN与△BDC之间的关系,并说明理由.

2019-04-29

(2014•淄博)如图,四边形ABCD中,AC⊥BD交BD于点E,点F,M分别是AB,BC的中点,BN平分∠ABE交AM于点N,AB=AC=BD.连接MF,NF.
(1)判断△BMN的形状,并证明你的结论;
(2)判断△MFN与△BDC之间的关系,并说明理由.
优质解答
(1)答:△BMN是等腰直角三角形.
证明:∵AB=AC,点M是BC的中点,
∴AM⊥BC,AM平分∠BAC.
∵BN平分∠ABE,
∠EBN=∠ABN.
∵AC⊥BD,
∴∠AEB=90°,
∴∠EAB+∠EBA=90°,
∴∠MNB=∠NAB+∠ABN=
1
2
(∠BAE+∠ABE)=45°.
∴△BMN是等腰直角三角形;

(2)答:△MFN∽△BDC.
证明:∵点F,M分别是AB,BC的中点,
∴FM∥AC,FM=
1
2
AC.
∵AC=BD,
∴FM=
1
2
BD,即
FM
BD
1
2

∵△BMN是等腰直角三角形,
∴NM=BM=
1
2
BC,即
NM
BC
1
2

FM
BD
NM
BC

∵AM⊥BC,
∴∠NMF+∠FMB=90°.
∵FM∥AC,
∴∠ACB=∠FMB.
∵∠CEB=90°,
∴∠ACB+∠CBD=90°.
∴∠CBD+∠FMB=90°,
∴∠NMF=∠CBD.
∴△MFN∽△BDC.
(1)答:△BMN是等腰直角三角形.
证明:∵AB=AC,点M是BC的中点,
∴AM⊥BC,AM平分∠BAC.
∵BN平分∠ABE,
∠EBN=∠ABN.
∵AC⊥BD,
∴∠AEB=90°,
∴∠EAB+∠EBA=90°,
∴∠MNB=∠NAB+∠ABN=
1
2
(∠BAE+∠ABE)=45°.
∴△BMN是等腰直角三角形;

(2)答:△MFN∽△BDC.
证明:∵点F,M分别是AB,BC的中点,
∴FM∥AC,FM=
1
2
AC.
∵AC=BD,
∴FM=
1
2
BD,即
FM
BD
1
2

∵△BMN是等腰直角三角形,
∴NM=BM=
1
2
BC,即
NM
BC
1
2

FM
BD
NM
BC

∵AM⊥BC,
∴∠NMF+∠FMB=90°.
∵FM∥AC,
∴∠ACB=∠FMB.
∵∠CEB=90°,
∴∠ACB+∠CBD=90°.
∴∠CBD+∠FMB=90°,
∴∠NMF=∠CBD.
∴△MFN∽△BDC.
相关问答