优质解答
1.
每个球都有4种放法,所以共有4^4=256种方法
2.
至多有一球则一个盒子里一球
4的全排列A(4,4)=24种
3.
先选空盒C(1,4)=4种
剩下三个盒子里的球必然是1,1,2
∴第二步把4个球分组,分为1,1,2
相当于只需要选出两个来作为1个的组即可
共有C(2,4)=6种
第三步把分好的三组球放入剩下的三个盒子里
共有A(3,3)=6种
所以一共有4*6*6=144种
4.
第一步:选编号相同的,共C(1,4)=4种
第二步:剩下的3个球放到3个盒子里,编号不能相同,第一个球有两种选择,选好后,后面两球的放法也定了,所以共2种
所以一共有4*2=8种
5.
可以这样想,因为每个盒内球数不少于它的编号数,所以先把每个盒内的球数都放到编号那么多个,那么剩下的球就可以随便放了
因为球相同,所以第一步:把每个盒内的球数都放到编号那么多个就只有一种方法,即1号盒子放1个,2号盒子放2个……4号盒子放4个
第二步,还剩20-1-2-3-4=10个球,放入4个盒子里,共有4^10种
所以一共有4^10种
1.
每个球都有4种放法,所以共有4^4=256种方法
2.
至多有一球则一个盒子里一球
4的全排列A(4,4)=24种
3.
先选空盒C(1,4)=4种
剩下三个盒子里的球必然是1,1,2
∴第二步把4个球分组,分为1,1,2
相当于只需要选出两个来作为1个的组即可
共有C(2,4)=6种
第三步把分好的三组球放入剩下的三个盒子里
共有A(3,3)=6种
所以一共有4*6*6=144种
4.
第一步:选编号相同的,共C(1,4)=4种
第二步:剩下的3个球放到3个盒子里,编号不能相同,第一个球有两种选择,选好后,后面两球的放法也定了,所以共2种
所以一共有4*2=8种
5.
可以这样想,因为每个盒内球数不少于它的编号数,所以先把每个盒内的球数都放到编号那么多个,那么剩下的球就可以随便放了
因为球相同,所以第一步:把每个盒内的球数都放到编号那么多个就只有一种方法,即1号盒子放1个,2号盒子放2个……4号盒子放4个
第二步,还剩20-1-2-3-4=10个球,放入4个盒子里,共有4^10种
所以一共有4^10种