2019-06-02
原题= (1)+(1+2) + (1+2+3) + (1+2+3+4)...+ ( 1+2+3...+2011)
= 1 + 3*2*½ +[ (1+3)*3*½] + ... + [(1+2011)*2011*½] (高斯求和定理)
= ½*[(1+1*1)+(2+2*2)+(3+3*3)+……+(2011+2011*2011)]
= ½*[(1+2+3+4+5+6+7+8+9+10+11+12...+2011)+(1²+2²+3²+4²+...+2011²)]
带入1+2²+3²+...+n²=n(n+1)(2n+1)/6
= ½[(1006*2011)+(2011*2012*4023)/6]
=½(2023066+2712931506)
=1357477286
标准格式如下:
原题= (1)+(1+2) + (1+2+3) + (1+2+3+4)...+ ( 1+2+3...+2011)
= 1 + 3*2*½ +[ (1+3)*3*½] + ... + [(1+2011)*2011*½] (高斯求和定理)
= ½*[(1+1*1)+(2+2*2)+(3+3*3)+……+(2011+2011*2011)]
= ½*[(1+2+3+4+5+6+7+8+9+10+11+12...+2011)+(1²+2²+3²+4²+...+2011²)]
带入1+2²+3²+...+n²=n(n+1)(2n+1)/6
= ½[(1006*2011)+(2011*2012*4023)/6]
=½(2023066+2712931506)
=1357477286
标准格式如下: