答案:解析: (1)要完成的事件是“带1本书”,无论是带外语书,还是数学书、物理书,都可以完成这件事,故用分类加法计数原理,共有5+4+3=12种. (2)需要完成的事件是“带2本不同学科的书”,要分三种情况: ①选1本外语书和1本数学书,只有这两科参考书都选,事情才算完成,因此用分步乘法计数原理,有5×4=20种选法; ②选1本外语书和1本物理书,有5×3=15种选法; ③选1本物理书和1本数学书,有3×4=12种选法. 而上述每一种做法都可以完成这件事,根据分类加法计数原理,共有20+15+12=47种选法.
答案:解析: (1)要完成的事件是“带1本书”,无论是带外语书,还是数学书、物理书,都可以完成这件事,故用分类加法计数原理,共有5+4+3=12种. (2)需要完成的事件是“带2本不同学科的书”,要分三种情况: ①选1本外语书和1本数学书,只有这两科参考书都选,事情才算完成,因此用分步乘法计数原理,有5×4=20种选法; ②选1本外语书和1本物理书,有5×3=15种选法; ③选1本物理书和1本数学书,有3×4=12种选法. 而上述每一种做法都可以完成这件事,根据分类加法计数原理,共有20+15+12=47种选法.