高中数学初学者求周期函数解法已知函数f (x )满足f(1)=1/4,4f(x)f(y)=f(x+y)+f(x-y)(x,y属于R),则f(2010)=?取y=1,则 4f(x)f(1)=f(x+1)+f(x-1)即 f(x)=f(x+1)+f(x-1)所以 f(x+1)=f(x+2)+f(x) (在上式中,以x+1代替x)两式相加,得 f(x+2)+f(x-1)=0所以 f(x+2)=-f(x-1)因此,f(x+6)=f[(x+4)+2]=-f[(x+4)-1]=-f(x+3)=-f[(x+1)+2]=
2019-05-30
高中数学初学者求周期函数解法
已知函数f (x )满足f(1)=1/4,4f(x)f(y)=f(x+y)+f(x-y)(x,y属于R),则f(2010)=?
取y=1,则 4f(x)f(1)=f(x+1)+f(x-1)
即 f(x)=f(x+1)+f(x-1)
所以 f(x+1)=f(x+2)+f(x) (在上式中,以x+1代替x)
两式相加,得 f(x+2)+f(x-1)=0
所以 f(x+2)=-f(x-1)
因此,f(x+6)=f[(x+4)+2]=-f[(x+4)-1]=-f(x+3)=-f[(x+1)+2]=f[(x+1)-1]=f(x)
就是说,函数是以6为周期的周期函数。
f(2010)=f(335*6)=f(0)
在已知等式中取x=1,y=0,则可得 4f(1)f(0)=2f(1),所以 f(0)=1/2
因此,f(2010)=f(0)=1/2.
此步不解:
f(x+6)=f[(x+4)+2]=-f[(x+4)-1]=-f(x+3)=-f[(x+1)+2]=f[(x+1)-1]=f(x)
优质解答
你是指函数变换(就是什么左右平移之类的)还是成周期的函数(这个应该相对要简单好多)
我不知道你的疑点在哪里 希望你可以说的清楚一点
应为我觉得 如果是后一种的应该不算是问题 可能跟前面这一种有点小问题吧
你是指函数变换(就是什么左右平移之类的)还是成周期的函数(这个应该相对要简单好多)
我不知道你的疑点在哪里 希望你可以说的清楚一点
应为我觉得 如果是后一种的应该不算是问题 可能跟前面这一种有点小问题吧