【高一数学】关于向量的减法》》》在三角形ABC中,若对任意t属于R,|BA-tBC|大于等于|AC|,则(A)角A=90°(B)角B=90°(C)角C=90°(D)角A=角B=角C=60°tBC=t*BC
2019-06-25
【高一数学】关于向量的减法》》》
在三角形ABC中,若对任意t属于R,|BA-tBC|大于等于|AC|,则
(A)角A=90°
(B)角B=90°
(C)角C=90°
(D)角A=角B=角C=60°
tBC=t*BC
优质解答
画一图就知道了.
在BC线上(包括延长线)取一点D.
且令BD=tBC(注意此处BD、BC均是向量)
则|BA-tBC|=|AD|,即是线段AD的长度.
而|AC|是线段AC的长度.
当点D变化时,|AD|的最小值为点A到BC连线的垂线的长度.
而对任意t,都有|AD|>=|AC|,则|AD|的最小值也大于等于|AC|.(1)
当t=1时,|AC|=|AD|.即|AC|大于等于|AD|的最小值.(2)
综合(1)、(2),|AC|等于|AD|的最小值.
显然角C=90°.
画一图就知道了.
在BC线上(包括延长线)取一点D.
且令BD=tBC(注意此处BD、BC均是向量)
则|BA-tBC|=|AD|,即是线段AD的长度.
而|AC|是线段AC的长度.
当点D变化时,|AD|的最小值为点A到BC连线的垂线的长度.
而对任意t,都有|AD|>=|AC|,则|AD|的最小值也大于等于|AC|.(1)
当t=1时,|AC|=|AD|.即|AC|大于等于|AD|的最小值.(2)
综合(1)、(2),|AC|等于|AD|的最小值.
显然角C=90°.