数学
设集合A={(x,y)|y=x2+ax+2},B={(x,y)|y=x+1,0≤x≤2},A∩B≠∅,求实数a的取值范围.

2019-05-27

设集合A={(x,y)|y=x2+ax+2},B={(x,y)|y=x+1,0≤x≤2},A∩B≠∅,求实数a的取值范围.
优质解答
问题转化为方程y=x2-ax+2与方程y=x+1在0≤x≤2范围内有解.
则:令g(x)=x2-(a+1)x+1=0在0≤x≤2内有根.
所以①0≤
a+1
2
≤2;②g(0)≥0;③g(2)≥0;④△=(a+1)2-4≥0
解上四个不等式得:1≤a≤
3
2
问题转化为方程y=x2-ax+2与方程y=x+1在0≤x≤2范围内有解.
则:令g(x)=x2-(a+1)x+1=0在0≤x≤2内有根.
所以①0≤
a+1
2
≤2;②g(0)≥0;③g(2)≥0;④△=(a+1)2-4≥0
解上四个不等式得:1≤a≤
3
2
相关问答