数学
已知函数f(x)=x+1/x,(1)判断函数f(x)的奇偶性(2)判断f(x)在区间(0,1)和(1,正无穷)上的单调性,并用定义证明

2019-06-02

已知函数f(x)=x+1/x,(1)判断函数f(x)的奇偶性
(2)判断f(x)在区间(0,1)和(1,正无穷)上的单调性,并用定义证明
优质解答
(1)f(x)的定义域为x≠0
∵f(﹣x)=﹣x+1/(﹣x)=﹣(x+1/x)=﹣f(x) ∴f(x)是奇函数
(2)f(x)在区间(0,1)上单调递减;在区间(1,﹢∞)上的单调递增
证明:
(1)设0<x1<x2<1
∵f(x1)-f(x2)=x1+1/x1-x2-1/x2=(x1-x2)+(x2-x1)/(x1x2)=(x1-x2)(x1x2-1)/(x1x2)
∵0<x1<x2<1 ∴x1-x2<0 0<x1x2<1 x1x2-1<0
∴(x1-x2)(x1x2-1)/(x1x2)>0 ∴f(x1)-f(x2)>0 ∴f(x1)>f(x2)
∴f(x)在区间(0,1)上单调递减
(2)设x2>x1>1
∵f(x1)-f(x2)=x1+1/x1-x2-1/x2=(x1-x2)+(x2-x1)/(x1x2)=(x1-x2)(x1x2-1)/(x1x2)
∵x2>x1>1 ∴x1-x2<0 x1x2>1 x1x2-1>0
∴(x1-x2)(x1x2-1)/(x1x2)<0 ∴f(x1)-f(x2)<0 ∴f(x1)<f(x2)
∴f(x)在区间(1,﹢∞)上的单调递增
(1)f(x)的定义域为x≠0
∵f(﹣x)=﹣x+1/(﹣x)=﹣(x+1/x)=﹣f(x) ∴f(x)是奇函数
(2)f(x)在区间(0,1)上单调递减;在区间(1,﹢∞)上的单调递增
证明:
(1)设0<x1<x2<1
∵f(x1)-f(x2)=x1+1/x1-x2-1/x2=(x1-x2)+(x2-x1)/(x1x2)=(x1-x2)(x1x2-1)/(x1x2)
∵0<x1<x2<1 ∴x1-x2<0 0<x1x2<1 x1x2-1<0
∴(x1-x2)(x1x2-1)/(x1x2)>0 ∴f(x1)-f(x2)>0 ∴f(x1)>f(x2)
∴f(x)在区间(0,1)上单调递减
(2)设x2>x1>1
∵f(x1)-f(x2)=x1+1/x1-x2-1/x2=(x1-x2)+(x2-x1)/(x1x2)=(x1-x2)(x1x2-1)/(x1x2)
∵x2>x1>1 ∴x1-x2<0 x1x2>1 x1x2-1>0
∴(x1-x2)(x1x2-1)/(x1x2)<0 ∴f(x1)-f(x2)<0 ∴f(x1)<f(x2)
∴f(x)在区间(1,﹢∞)上的单调递增
相关问答