数学
观察下列等式:(1+1)=2×1(2+1)(2+2)=22×1×3(3+1)(3+2)(3+3)=23×1×3×5…照以上式子规律:(1)写出第4个等式,并猜想第n个等式;(n∈N*)(2)用数学归纳法证明上述所猜想的第n个等式成立.(n∈N*)

2019-05-23

观察下列等式:
(1+1)=2×1
(2+1)(2+2)=22×1×3
(3+1)(3+2)(3+3)=23×1×3×5

照以上式子规律:
(1)写出第4个等式,并猜想第n个等式;(n∈N*
(2)用数学归纳法证明上述所猜想的第n个等式成立.(n∈N*
优质解答
(1)(1+1)=2×1,
(2+1)(2+2)=22×1×3,
(3+1)(3+2)(3+3)=23×1×3×5,
第4个等式,(4+1)(4+2)(4+3)(4+4)=24×1×3×5×7;
猜想第n个等式:(n+1)(n+2)(n+3)…(n+n)=2n×1×3×5×…×(2n-1)(n∈N*
(2)①当n=1时,左边=(1+1)=2,右边=2×1=2等式成立; 
②假设当n=k时,原式成立,即:(k+1)(k+2)(k+3)…(k+k)=2k×1×3×5×…×(2k-1)(k∈N*
那么,当n=k+1时,左边=:(k+1+1)(k+1+2)(k+1+3)…(k+1+k-1)(k+1+k)(k+1+k+1)
=
[(k+1)(k+2)(k+3)…(k+1+k−1)](k+1+k)(k+1+k+1)
k+1

=
2k×1×3×5×…×(2k−1)(2k+1)(2k+2)
k+1

=2k+1×1×3×5×…×(2k+1)=右边,
故n=k+1时,等式也成立.
由①②知:(n+1)(n+2)(n+3)…(n+n)=2n×1×3×5×…×(2n-1)(n∈N*) 成立.
(1)(1+1)=2×1,
(2+1)(2+2)=22×1×3,
(3+1)(3+2)(3+3)=23×1×3×5,
第4个等式,(4+1)(4+2)(4+3)(4+4)=24×1×3×5×7;
猜想第n个等式:(n+1)(n+2)(n+3)…(n+n)=2n×1×3×5×…×(2n-1)(n∈N*
(2)①当n=1时,左边=(1+1)=2,右边=2×1=2等式成立; 
②假设当n=k时,原式成立,即:(k+1)(k+2)(k+3)…(k+k)=2k×1×3×5×…×(2k-1)(k∈N*
那么,当n=k+1时,左边=:(k+1+1)(k+1+2)(k+1+3)…(k+1+k-1)(k+1+k)(k+1+k+1)
=
[(k+1)(k+2)(k+3)…(k+1+k−1)](k+1+k)(k+1+k+1)
k+1

=
2k×1×3×5×…×(2k−1)(2k+1)(2k+2)
k+1

=2k+1×1×3×5×…×(2k+1)=右边,
故n=k+1时,等式也成立.
由①②知:(n+1)(n+2)(n+3)…(n+n)=2n×1×3×5×…×(2n-1)(n∈N*) 成立.
相关问答